Matching Items (7)
Filtering by

Clear all filters

152804-Thumbnail Image.png
Description
Arsenic (As) and chromium (Cr) occur naturally in AZ surface and groundwaters, pose different health impacts, and exhibit different treatment efficacies. Hexavalent chromium (Cr(VI)) has newly recognized human health concerns, and State and Federal agencies are evaluating a low Cr(VI)-specific maximum contaminant level (MCL) for drinking water. Occurrence of Cr

Arsenic (As) and chromium (Cr) occur naturally in AZ surface and groundwaters, pose different health impacts, and exhibit different treatment efficacies. Hexavalent chromium (Cr(VI)) has newly recognized human health concerns, and State and Federal agencies are evaluating a low Cr(VI)-specific maximum contaminant level (MCL) for drinking water. Occurrence of Cr and As in municipal drinking waters and industrial cooling tower waters was quantified by grab samples and compared with sampling results obtained from a new passive sampler developed specifically for Cr(VI). Cr(VI) and As concentrations in groundwater used for cooling tower make-up water concentrations were ~3 ppb and ~4 ppb, respectively, and were concentrated significantly in blowdown water (~20 ppb and ~40 ppb). Based upon pending Cr(VI), As, and other metal regulations, these blowdown waters will need routine monitoring and treatment. Cr(VI) concentrations in a water treatment plant (WTP) raw and finished water samples varied from 0.5 and 2 ppb for grab samples collected every 4 hours for 7 consecutive days using an ISCO sampler. The development of an ion exchange (IX) based passive sampler was validated in the field at the WTP and yielded an average exposure within 1 standard deviation of ISCO sampler grab data. Sampling at both the WTP and cooling towers suggested sources of Cr(III) from treatment chemicals or wood preservatives may exist. Since both facilities use chlorine oxidants, I quantified the apparent (pH=5) second-order rate constant for aqueous chlorine (HOCl/OCl-) with Cr(III) to form Cr(VI) as 0.7 M-1s-1. Under typical conditions (2 ppb Cr(III) ; 2 mg/L Cl2) the half-life for the conversion of Cr(III) to the more toxic form Cr(VI) is 4.7 hours. The occurrence studies in AZ and CA show the Cr(VI) and As treatment of groundwaters will be required to meet stringent Cr(VI) regulations. IX technologies, both strong base anion (SBA) and weak base anion (WBA) resin types were screened (and compared) for Cr removal. The SBA IX process for As removal was optimized by utilizing a reactive iron coagulation and filtration (RCF) process to treat spent IX brine, which was then reused to for SBA resin regeneration.
ContributorsBowen, Alexandra (Author) / Paul, Westerhoff K. (Thesis advisor) / Hristovski, Kiril (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2014
149765-Thumbnail Image.png
Description
The goal of the study was twofold: (i) to investigate the synthesis of hematite-impregnated granular activated carbon (Fe-GAC) by hydrolysis of Fe (III) and (ii) to assess the effectiveness of the fabricated media in removal of arsenic from water. Fe-GAC was synthesized by hydrolysis of Fe(III) salts under two Fe

The goal of the study was twofold: (i) to investigate the synthesis of hematite-impregnated granular activated carbon (Fe-GAC) by hydrolysis of Fe (III) and (ii) to assess the effectiveness of the fabricated media in removal of arsenic from water. Fe-GAC was synthesized by hydrolysis of Fe(III) salts under two Fe (III) initial dosages (0.5M and 2M) and two hydrolysis periods (24 hrs and 72 hrs). The iron content of the fabricated Fe-GAC media ranged from 0.9% to 4.4% Fe/g of the dry media. Pseudo-equilibrium batch test data at pH = 7.7±0.2 in 1mM NaHCO3 buffered ultrapure water and challenge groundwater representative of the Arizona Mexico border region were fitted to a Freundlich isotherm model. The findings suggested that the arsenic adsorption capacity of the metal (hydr)oxide modified GAC media is primarily controlled by the surface area of the media, while the metal content exhibited lesser effect. The adsorption capacity of the media in the model Mexican groundwater matrix was significantly lower for all adsorbent media. Continuous flow short bed adsorber tests (SBA) demonstrated that the adsorption capacity for arsenic in the challenge groundwater was reduced by a factor of 3 to 4 as a result of the mass transport effects. When compared on metal basis, the iron (hydr)oxide modified media performed comparably well as existing commercial media for treatment of arsenic. On dry mass basis, the fabricated media in this study removed less arsenic than their commercial counterparts because the metal content of the commercial media was significantly higher.
ContributorsJain, Arti (Author) / Hristovski, Kiril (Thesis advisor) / Olson, Larry (Committee member) / Madar, David (Committee member) / Edwards, David (Committee member) / Arizona State University (Publisher)
Created2011
150107-Thumbnail Image.png
Description
Titanium dioxide (TiO2) nanomaterial use is becoming more prevalent as is the likelihood of human exposure and environmental release. The goal of this thesis is to develop analytical techniques to quantify the level of TiO2 in complex matrices to support environmental, health, and safety research of TiO2 nanomaterials. A pharmacokinetic

Titanium dioxide (TiO2) nanomaterial use is becoming more prevalent as is the likelihood of human exposure and environmental release. The goal of this thesis is to develop analytical techniques to quantify the level of TiO2 in complex matrices to support environmental, health, and safety research of TiO2 nanomaterials. A pharmacokinetic model showed that the inhalation of TiO2 nanomaterials caused the highest amount to be absorbed and distributed throughout the body. Smaller nanomaterials (< 5nm) accumulated in the kidneys before clearance. Nanoparticles of 25 nm diameter accumulated in the liver and spleen and were cleared from the body slower than smaller nanomaterials. A digestion method using nitric acid, hydrofluoric acid, and hydrogen peroxide was found to digest organic materials and TiO2 with a recovery of >80%. The samples were measured by inductively coupled plasma-mass spectrometry (ICP-MS) and the method detection limit was 600 ng of Ti. An intratracheal instillation study of TiO2 nanomaterials in rats found anatase TiO2 nanoparticles in the caudal lung lobe of rats 1 day post instillation at a concentration of 1.2 ug/mg dry tissue, the highest deposition rate of any TiO2 nanomaterial. For all TiO2 nanomaterial morphologies the concentrations in the caudal lobes were significantly higher than those in the cranial lobes. In a study of TiO2 concentration in food products, white colored foods or foods with a hard outer shell had higher concentrations of TiO2. Hostess Powdered Donettes were found to have the highest Ti mass per serving with 200 mg Ti. As much as 3.8% of the total TiO2 mass was able to pass through a 0.45 um indicating that some of the TiO2 is likely nanosized. In a study of TiO2 concentrations in personal care products and paints, the concentration of TiO2 was as high as 117 ug/mg in Benjamin Moore white paint and 70 ug/mg in a Neutrogena sunscreen. Greater than 6% of Ti in one sunscreen was able to pass through a 0.45 um filter. The nanosized TiO2 in food products and personal care products may release as much as 16 mg of nanosized TiO2 per individual per day to wastewater.
ContributorsWeir, Alex Alan (Author) / Westerhoff, Paul K (Thesis advisor) / Hristovski, Kiril (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2011
150594-Thumbnail Image.png
Description
As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. However, the fate of widely used NMs in wastewater treatment plants (WWTPs) remains poorly understood. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of

As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. However, the fate of widely used NMs in wastewater treatment plants (WWTPs) remains poorly understood. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of full-scale biological WWTPs for several weeks. NM loadings at the higher range of expected environmental concentrations were selected. To achieve the pseudo-equilibrium state concentration of NMs in biomass, SBR experiments needed to operate for more than three times the SRT value, approximately 18 days. Under the conditions tested, NMs had negligible effects on ability of the wastewater bacteria to biodegrade organic material, as measured by chemical oxygen demand (COD). NM mass balance closure was achieved by measuring NMs in liquid effluent and waste biosolids. All NMs were well removed at the typical biomass concentration (1~2 gSS/L). However, carboxy-terminated polymer coated silver nanoparticles (fn-Ag) were removed less effectively (88% removal) than hydroxylated fullerenes (fullerols; >90% removal), nano TiO2 (>95% removal) or aqueous fullerenes (nC60; >95% removal). Although most NMs did not settle out of the feed solution without bacteria present, approximately 65% of the titanium dioxide was removed even in the absence of biomass simply due to self-aggregation and settling. Experiments conducted over 4 months with daily loadings of nC60 showed that nC60 removal from solution depends on the biomass concentration. Under conditions representative of most suspended growth biological WWTPs (e.g., activated sludge), most of the NMs will accumulate in biosolids rather than in liquid effluent discharged to surface waters. Significant fractions of fn-Ag were associated with colloidal material which suggests that efficient particle separation processes (sedimentation or filtration) could further improve removal of NM from effluent. As most NMs appear to accumulate in biosolids, future research should examine the fate of NMs during disposal of WWTP biosolids, which may occur through composting or anaerobic digestion and/or land application, incineration, or landfill disposal.
ContributorsWang, Yifei (Author) / Westerhoff, Paul (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Rittmann, Bruce (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2012
153798-Thumbnail Image.png
Description
Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents

Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents in clothing and plastics, among other applications in industries such as pharmaceuticals, renewable energy, and prosthetics. This thesis incorporates investigations into both application of nanoparticles into polymers as well as implications of nanoparticle release into the environment. First, the integration of ENPs into polymer fibers via electrospinning was explored. Electrospinning uses an external electric field applied to a polymer solution to produce continuous fibers with large surface area and small volume, a quality which makes the fibers ideal for water and air purification purposes. Indium oxide and titanium dioxide nanoparticles were embedded in polyvinylpyrrolidone and polystyrene. Viscosity, critical voltage, and diameter of electrospun fibers were analyzed in order to determine the effects of nanoparticle integration into the polymers. Critical voltage and viscosity of solution increased at 5 wt% ENP concentration. Fiber morphology was not found to change significantly as a direct effect of ENP addition, but as an effect of increased viscosity and surface tension. These results indicate the possibility for seamless integration of ENPs into electrospun polymers. Implications of ENP release were investigated using phase distribution functional assays of nanoscale silver and silver sulfide, as well as photolysis experiments of nanoscale titanium dioxide to quantify hydroxyl radical production. Functional assays are a means of screening the relevant importance of multiple processes in the environmental fate and transport of ENPs. Four functional assays – water-soil, water-octanol, water-wastewater sludge and water-surfactant – were used to compare concentrations of silver sulfide ENPs (Ag2S-NP) and silver ENPs (AgNP) capped by four different coatings. The functional assays resulted in reproducible experiments which clearly showed variations between nanoparticle phase distributions; the findings may be a product of the effects of the different coatings of the ENPs used. In addition to phase distribution experiments, the production of hydroxyl radical (HO•) by nanoscale titanium dioxide (TiO2) under simulated solar irradiation was investigated. Hydroxyl radical are a short-lived, highly reactive species produced by solar radiation in aquatic environments that affect ecosystem function and degrades pollutants. HO• is produced by photolysis of TiO2 and nitrate (NO3-); these two species were used in photolysis experiments to compare the relative loads of hydroxyl radical which nanoscale TiO2 may add upon release to natural waters. Para-chlorobenzoic acid (pCBA) was used as a probe. Measured rates of pCBA oxidation in the presence of various concentrations of TiO2 nanoparticles and NO3- were utilized to calculate pseudo first order rate constants. Results indicate that, on a mass concentration basis in water, TiO2 produces hydroxyl radical steady state concentrations at 1.3 times more than the equivalent amount of NO3-; however, TiO2 concentrations are generally less than one order of magnitude lower than concentrations of NO3-. This has implications for natural waterways as the amount of nanoscale TiO2 released from consumer products into natural waterways increases in proportion to its use.
ContributorsHoogesteijn von Reitzenstein, Natalia (Author) / Westerhoff, Paul (Thesis advisor) / Herckes, Pierre (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2015
154169-Thumbnail Image.png
Description
Arsenic (As) is a naturally occurring element that poses a health risk when continually consumed at levels exceeding the Environmental Protection Agencies (EPA) maximum contaminant level (MCL) of 10 ppb. With the Arizona Department of Water Resources considering reliance on other sources of water other than just solely surface water,

Arsenic (As) is a naturally occurring element that poses a health risk when continually consumed at levels exceeding the Environmental Protection Agencies (EPA) maximum contaminant level (MCL) of 10 ppb. With the Arizona Department of Water Resources considering reliance on other sources of water other than just solely surface water, groundwater proves a reliable, supplemental source. The Salt River Project (SRP) wants to effectively treat their noncompliance groundwater sources to meet EPA compliance. Rapid small-scale column tests (RSSCTs) of two SRP controlled groundwater wells along the Eastern Canal and Consolidated Canal were designed to assist SRP in selection and future design of full-scale packed bed adsorbent media. Main concerns for column choice is effectiveness, design space at groundwater wells, and simplicity. Two adsorbent media types were tested for effective treatment of As to below the MCL: a synthetic iron oxide, Bayoxide E33, and a strong base anion exchange resin, SBG-1. Both media have high affinity toward As and prove effective at treating As from these groundwater sources. Bayoxide E33 RSSCT performance indicated that As treatment lasted to near 60,000 bed volumes (BV) in both water sources and still showed As adsorption extending past this operation ranging from several months to a year. SBG-1 RSSCT performance indicated As, treatment lasted to 500 BV, with the added benefit of being regenerated. At 5%, 13%, and 25% brine regeneration concentrations, regeneration showed that 5% brine is effective, yet would complicate overall design and footprint. Bayoxide E33 was selected as the best adsorbent media for SRP use in full-scale columns at groundwater wells due to its simplistic design and high efficiency.
ContributorsLesan, Dylan (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Committee member) / Fraser, Matthew (Committee member) / Arizona State University (Publisher)
Created2015
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019