Matching Items (20)
Filtering by

Clear all filters

149765-Thumbnail Image.png
Description
The goal of the study was twofold: (i) to investigate the synthesis of hematite-impregnated granular activated carbon (Fe-GAC) by hydrolysis of Fe (III) and (ii) to assess the effectiveness of the fabricated media in removal of arsenic from water. Fe-GAC was synthesized by hydrolysis of Fe(III) salts under two Fe

The goal of the study was twofold: (i) to investigate the synthesis of hematite-impregnated granular activated carbon (Fe-GAC) by hydrolysis of Fe (III) and (ii) to assess the effectiveness of the fabricated media in removal of arsenic from water. Fe-GAC was synthesized by hydrolysis of Fe(III) salts under two Fe (III) initial dosages (0.5M and 2M) and two hydrolysis periods (24 hrs and 72 hrs). The iron content of the fabricated Fe-GAC media ranged from 0.9% to 4.4% Fe/g of the dry media. Pseudo-equilibrium batch test data at pH = 7.7±0.2 in 1mM NaHCO3 buffered ultrapure water and challenge groundwater representative of the Arizona Mexico border region were fitted to a Freundlich isotherm model. The findings suggested that the arsenic adsorption capacity of the metal (hydr)oxide modified GAC media is primarily controlled by the surface area of the media, while the metal content exhibited lesser effect. The adsorption capacity of the media in the model Mexican groundwater matrix was significantly lower for all adsorbent media. Continuous flow short bed adsorber tests (SBA) demonstrated that the adsorption capacity for arsenic in the challenge groundwater was reduced by a factor of 3 to 4 as a result of the mass transport effects. When compared on metal basis, the iron (hydr)oxide modified media performed comparably well as existing commercial media for treatment of arsenic. On dry mass basis, the fabricated media in this study removed less arsenic than their commercial counterparts because the metal content of the commercial media was significantly higher.
ContributorsJain, Arti (Author) / Hristovski, Kiril (Thesis advisor) / Olson, Larry (Committee member) / Madar, David (Committee member) / Edwards, David (Committee member) / Arizona State University (Publisher)
Created2011
150253-Thumbnail Image.png
Description
Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as a source of planktonic biomass for biofuel production. Mixed marine organisms in the size range of 20µm to 500µm were

Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as a source of planktonic biomass for biofuel production. Mixed marine organisms in the size range of 20µm to 500µm were isolated from the University of California, Santa Barbara (UCSB) seawater filtration system during weekly backwash events between the months of April and August, 2011. The quantity of organic material produced was determined by sample combustion and calculation of ash-free dry weights. Qualitative investigation required density gradient separation with the heavy liquid sodium metatungstate followed by direct transesterification and gas chromatography with mass spectrometry (GC-MS) of the fatty acid methyl esters (FAME) produced. A maximum of 0.083g/L of dried organic material was produced in a single backwash event and a study average of 0.036g/L was calculated. This equates to an average weekly value of 7,674.75g of dried organic material produced from the filtration of approximately 24,417,792 liters of seawater. Temporal variations were limited. Organic quantities decreased over the course of the study. Bio-fouling effects from mussel overgrowth inexplicably increased production values when compared to un-fouled seawater supply lines. FAMEs (biodiesel) averaged 0.004% of the dried organic material with 0.36ml of biodiesel produced per week, on average. C16:0 and C22:6n3 fatty acids comprised the majority of the fatty acids in the samples. Saturated fatty acids made up 30.71% to 44.09% and unsaturated forms comprised 55.90% to 66.32% of the total chemical composition. Both quantities and qualities of organics and FAMEs were unrealistic for use as biodiesel but sample size limitations, system design, geographic and temporal factors may have impacted study results.
ContributorsPierre, Christophe (Author) / Olson, Larry (Thesis advisor) / Sommerfeld, Milton (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2011
150993-Thumbnail Image.png
Description
Nanotechnology is a scientific field that has recently expanded due to its applications in pharmaceutical and personal care products, industry and agriculture. As result of this unprecedented growth, nanoparticles (NPs) have become a significant environmental contaminant, with potential to impact various forms of life in environment. Metal nanoparticles (mNPs) exhibit

Nanotechnology is a scientific field that has recently expanded due to its applications in pharmaceutical and personal care products, industry and agriculture. As result of this unprecedented growth, nanoparticles (NPs) have become a significant environmental contaminant, with potential to impact various forms of life in environment. Metal nanoparticles (mNPs) exhibit unique properties such as increased chemical reactivity due to high specific surface area to volume ratios. Bacteria play a major role in many natural and engineered biogeochemical reactions in wastewater treatment plants and other environmental compartments. I have evaluated the laboratory isolates of E. coli, Bacillus, Alcaligenes, Pseudomonas; wastewater isolates of E. coli and Bacillus; and pathogenic isolate of E. coli for their response to 50 & 100 nm sized Cu nanoparticles (CuNPs). Bactericidal tests, scanning electron microscopy (SEM) analyses, and probable toxicity pathways assays were performed. The results indicate that under continuous mixing conditions, CuNPs are effective in inactivation of the selected bacterial isolates. In general, exposure to CuNPs resulted in 4 to >6 log reduction in bacterial population within 2 hours. Based on the GR, LDH and MTT assays, bacterial cells showed different toxicity elicitation pathways after exposure to CuNPs. Therefore, it can be concluded that the laboratory isolates are good candidates for predicting the behavior of environmental isolates exposed to CuNPs. Also, high inactivation values recorded in this study suggest that the presence of CuNPs in different environmental compartments may have an impact on pollutants attenuation and wastewater biological treatment processes. These results point towards the need for an in depth investigation of the impact of NPs on the biological processes; and long-term effect of high load of NPs on the stability of aquatic and terrestrial ecologies.
ContributorsAlboloushi, Ali (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Olson, Larry (Committee member) / Arizona State University (Publisher)
Created2012
171577-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the

Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the efficiency of bioremediation in the subsurface. Specifically, I investigated strategies to (i) promote improve microbial reductive dechlorination extent through the addition of Fe0 and (ii) Cr (VI) bio-reduction through enrichment of specialized microbial consortia. Fe0 can enhance microbial TCE reduction by inducing anoxic conditions and generating H2 (electron donor). I first evaluated the effect of Fe0 on microbial reduction of TCE (with ClO4– as co-contaminant) using semi-batch soil microcosms. Results showed that high concentration of Fe0 expected during in situ remediation inhibited microbial TCE and ClO4– reduction when added together with Dehalococcoides mccartyi-containing cultures. A low concentration of aged Fe0 enhanced microbial TCE dechlorination to ethene and supported complete microbial ClO4– reduction. I then evaluated a decoupled Fe0 and biostimulation/bioaugmentation treatment approach using soil packed columns with continuous flow of groundwater. I demonstrated that microbial TCE reductive dechlorination to ethene can be benefitted by Fe0 abiotic reactions, when biostimulation and bioaugmentation are performed downstream of Fe0 addition. Furthermore, I showed that ethene production can be sustained in the presence of aerobic groundwater (after Fe0 exhaustion) by the addition of organic substrates. I hypothesized that some lessons learned from TCE Bioremediation can be applied also for other pollutants that can benefit from anaerobic reductions, like Cr (VI). Bioremediation of Cr (VI) has historically relied on biostimulation of native microbial communities, partially due to the lack of knowledge of the benefits of adding enriched consortia of specialized microorganisms (bioaugmentation). To determine the merits of a specialized consortium on bio-reduction of Cr (VI), I first enriched a culture on lactate and Cr (VI). The culture had high abundance of putative Morganella species and showed rapid and sustained Cr (VI) bio-reduction compared to a subculture grown with lactate only (without Morganella). Overall, this dissertation work documents possible strategies for synergistic abiotic and biotic chlorinated ethenes reduction, and highlights that specialized consortia may benefit Cr (VI) bio-reduction.
ContributorsMohana Rangan, Srivatsan (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2022
171901-Thumbnail Image.png
Description
The world currently faces hundreds of millions of cubic meters of soil contaminated with petroleum crude oil residuals. The application of ozone gas (O3) to contaminated soil is an effective means to oxidize petrogenic compounds and, when used with bioremediation, remove the oxidized byproducts. The overarching goal of this dissertation

The world currently faces hundreds of millions of cubic meters of soil contaminated with petroleum crude oil residuals. The application of ozone gas (O3) to contaminated soil is an effective means to oxidize petrogenic compounds and, when used with bioremediation, remove the oxidized byproducts. The overarching goal of this dissertation was to evaluate two areas of potential concern to large-scale O3 deployment: the capacity of O3-treated petroleum contaminated soils to support seed germination before bioremediation and the transport characteristics of O3 in soil columns. A matched study comparing the germination outcomes of radish (Raphanus sativus L.), grass (Lagurus ovatus), and lettuce (Lactuca sativa) in soils contaminated with three crude oils at various O3 total-dose levels showed that radish germination was sensitive to the soluble byproducts of oxidized petroleum (assayed as dissolved organic carbon [DOC]), but not sensitive to the unreacted petroleum (total petroleum hydrocarbon [TPH]). A multivariable logistic regression model based on the radish results showed that adverse germination outcomes varied with the DOC concentration and that DOC ecotoxicity decreased with increasing O3 dose-level and background organic material. The model was used to create a risk management map of conditions that created 10%, 25%, and 50% extra risks of adverse radish germination. Thus, while O3 effectively lowered TPH in soils, the byproducts exhibited ecotoxicity that inhibited radish germination. On the other hand, the sensitivity of radish germination to oxidized petroleum byproducts could be utilized to assess ecological risk. The feasibility of gas transport in the soil matrix is also of paramount concern to field-scale utilization of O3. A matched study comparing TPH removal at three field-relevant loading rates (4, 12, or 36 mgozone/ gsoil/ hr) and various total dose-levels showed an anisotropic pattern along the axial distance favoring the column inlet end. The asymmetry decreased as loading rate decreased and with concurrent improvements in O3-transport distance, O3 utilization, and heat balance. Overall, a low O3 loading rate significantly improved O3 transport and utilization efficiency, while also better distributing reaction-generated heat along the gas flow path for a depth typically utilized in bioremediation field settings.
ContributorsYavuz, Burcu Manolya (Author) / Rittmann, Bruce E (Thesis advisor) / Delgado, Anca G (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2022
190875-Thumbnail Image.png
Description
Mining-influenced water (MIW) is an acidic stream containing a typically acidic pH (e.g., 2.5), sulfate, and dissolved metal(loid)s. MIW has the potential to affect freshwater ecosystems and thus MIW requires strategies put in place for containment and treatment. Lignocellulosic sulfate-reducing biochemical reactors (SRBRs) are considered a cost-effective passive

Mining-influenced water (MIW) is an acidic stream containing a typically acidic pH (e.g., 2.5), sulfate, and dissolved metal(loid)s. MIW has the potential to affect freshwater ecosystems and thus MIW requires strategies put in place for containment and treatment. Lignocellulosic sulfate-reducing biochemical reactors (SRBRs) are considered a cost-effective passive treatment for MIW and have been documented to continuously treat MIW at the field-scale. However, long-term operation (> 1 year) and reliable MIW treatment by SRBRs at mining sites is challenged by the decline in sulfate-reduction, the key treatment mechanism for metal(loid) immobilization. This dissertation addresses operational designs and materials suited to promote sulfate reduction in lignocellulosic SRBRs treating MIW. In this dissertation I demonstrated that lignocellulosic SRBRs containing spent brewing grains and/or sugarcane bagasse can be acclimated in continuous mode at hydraulic retention times (HRTs) of 7-12 d while simultaneously removing 80 ± 20% – 91 ± 3% sulfate and > 98% metal(loid)s. Additionally, I showed that decreasing the HRT to 3 d further yields high metal(loid) removal (97.5 ± 1.3% – 98.8 ± 0.9%). Next, I verified the utility of basic oxygen furnace slag to increase MIW pH in a two-stage treatment involving a slag stage and an SRBR stage containing spent brewing grains or sugarcane bagasse. The slag reactor from the two-stage treatment increased MIW pH from 2.6 ± 0.2 to 12 ± 0.3 requiring its re-combination with fresh MIW to reduce pH to 5.0 ± 1.0 prior to entering the lignocellulosic SRBRs. The lignocellulosic SRBRs from the two-stage treatment successfully continued to remove metal(loid)s, most notably cadmium, copper, and zinc at ≥ 96%. In additions to these outcomes, I performed a metadata analysis of 27 SRBRs employing brewers spent grains, sugarcane bagasse, rice husks and rice bran, or a mixture of walnut shells, woodchips, and alfalfa. I found that sugarcane bagasse SRBRs can remove between 94 and 168 mg metal(loid) kg–1 lignocellulose d–1. In addition, Bacteroidia relative abundances showed a positive correlation with increasing sulfate removal across all 27 SRBRs and are likely essential for the degradation of lignocellulose providing electron donors for sulfate reduction. Clostridia and Gammaproteobacteria were negatively correlated with sulfate reduction in the 27 SRBRs, however SRBRs that received alkalinized MIW had lower relative abundances of Clostridia, Gammaproteobacteria, and methanogenic archaea (known competitors for sulfate-reducing bacteria). Overall, my dissertation provides insight into lignocellulosic materials and operational designs to promote long-term sulfate-reduction in lignocellulosic SRBRs treating MIW.
ContributorsMiranda, Evelyn Monica (Author) / Delgado, Anca G (Thesis advisor) / Santisteban, Leonard (Committee member) / Hamdan, Nasser (Committee member) / Rittmann, Bruce (Committee member) / Arizona State University (Publisher)
Created2023
Description

This research aims to develop an understanding of how interventions designed to improve water quality in buildings can be used to mitigate Legionella pneumophila concentrations. Intervention methods can be described as any approach that can be used to improve microbial water quality. In order to provide a foundation of background

This research aims to develop an understanding of how interventions designed to improve water quality in buildings can be used to mitigate Legionella pneumophila concentrations. Intervention methods can be described as any approach that can be used to improve microbial water quality. In order to provide a foundation of background knowledge, a literature review was conducted to identify similar studies and collect relevant and timely research similar to the subject. The information gathered from the literature review was used to structure the sampling process and parameters. Using the research collected from the literature review, a review table was created to summarize the differences in the studies conducted and to determine research gaps. To categorize the studies, intervention methods, contaminants addressed, and water quality meta-data were differentiated for each of the articles. For the purpose of the sampling process, the three interventions analyzed consist of flushing, water heater set point change, and both flushing and water heater set point change. The locations of the sampling consisted of the city drinking water inlet, the basement janitor's closet, basement shower, 2nd floor, 3rd floor, and 7th floor break rooms and restrooms of the Interdisciplinary Science and Technology Building IV at ASU. For the flushing intervention, the sampling results demonstrated an increase in free and total chlorine concentration post flushing which aligns with the research found in the literature review. In addition, it was observed that iron concentrations drastically increased for both the cold and hot water by flushing. There was a significant decrease detected for ATP concentrations post flush in the hot line. However through the sampling session, the flushing intervention did not yield statistically significant results for Legionella concentrations.

ContributorsCahill, Molly (Author) / Call, Kathryn (Co-author) / Johnson, Elizabeth (Co-author) / Kotta, Vishnu (Co-author) / Hamilton, Kerry (Thesis director) / Boyer, Treavor (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor)
Created2023-05
168342-Thumbnail Image.png
Description
The current level of carbon dioxide in ambient air is increasing and reinforcing the severity of global warming. Several techniques have been developed to capture the gas directly from the air. Moisture swing absorption (MSA) is a mechanism through which a reactive surface, namely resin beads, absorbs carbon dioxide

The current level of carbon dioxide in ambient air is increasing and reinforcing the severity of global warming. Several techniques have been developed to capture the gas directly from the air. Moisture swing absorption (MSA) is a mechanism through which a reactive surface, namely resin beads, absorbs carbon dioxide when dry and releases it when wet. The ionic complexity of the surface of the bead interacts with CO2 when H2O contents are low, and CO2 diffuses as bicarbonate or carbonate. Hence, diffusion-drift-reaction equations describe the moving species behavior MS sorbent. A numerical model has been developed previously applying finite difference scheme (FDS) to estimate the evolution of species concentrations over uniform time and space intervals. The methodology was based on a specific membrane and bead geometry. In this study, FDS was employed again with modifications over the boundary conditions. Neumann boundary condition was replaced by Robin boundary condition which enforced diffusion and drift fluxes at the center of the sorbent. Furthermore, the generic equations were approximated by another numerical scheme, Finite volume scheme (FVS), which discretizes the spatial domain into cells that conserves the mass of species within. The model was predicted to reduce the total carbon mass loss within the system. Both schemes were accommodated with a simulated model of isolated chamber that contained arbitrary sorbent. Moreover, to derive the outcomes of absorption/desorption cycles and validate the performance of FVS, Langmuir curve was utilized to obtain CO2 saturation in the sorbent and examine two scenarios: one by varying the partial pressure of CO2 (PCO2) in the chamber at constant H2O (PH2O), or changing PH2O at constant PCO2. The results from FDS approximation, when adjusting the center with Robin boundary condition, show 0.11% lower carbon mass gain than when applying Neumann boundary condition. On the other hand, FVS minimizes the mass loss by 0.3% lower than the original total carbon mass and achieves sorbent saturation without any adjustment. Moreover, the isotherm curve demonstrates that increasing PH2O reduces CO2 saturation and is dependent on the linear and non-linear correlations used to estimate water concentration on the surface.
ContributorsMejbel, Meteb (Author) / Lackner, Klaus (Thesis advisor) / Boyer, Treavor (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2021
187702-Thumbnail Image.png
Description
Efforts to enhance the quality of life and promote better health have led to improved water quality standards. Adequate daily fluid intake, primarily from tap water, is crucial for human health. By improving drinking water quality, negative health effects associated with consuming inadequate water can be mitigated. Although the United

Efforts to enhance the quality of life and promote better health have led to improved water quality standards. Adequate daily fluid intake, primarily from tap water, is crucial for human health. By improving drinking water quality, negative health effects associated with consuming inadequate water can be mitigated. Although the United States Environmental Protection Agency (EPA) sets and enforces federal water quality limits at water treatment plants, water quality reaching end users degrades during the water delivery process, emphasizing the need for proactive control systems in buildings to ensure safe drinking water.Future commercial and institutional buildings are anticipated to feature real-time water quality sensors, automated flushing and filtration systems, temperature control devices, and chemical boosters. Integrating these technologies with a reliable water quality control system that optimizes the use of chemical additives, filtration, flushing, and temperature adjustments ensures users consistently have access to water of adequate quality. Additionally, existing buildings can be retrofitted with these technologies at a reasonable cost, guaranteeing user safety. In the absence of smart buildings with the required technology, Chapter 2 describes developing an EPANET-MSX (a multi-species extension of EPA’s water simulation tool) model for a typical 5-story building. Chapter 3 involves creating accurate nonlinear approximation models of EPANET-MSX’s complex fluid dynamics and chemical reactions and developing an open-loop water quality control system that can regulate the water quality based on the approximated state of water quality. To address potential sudden changes in water quality, improve predictions, and reduce the gap between approximated and true state of water quality, a feedback control loop is developed in Chapter 4. Lastly, this dissertation includes the development of a reinforcement learning (RL) based water quality control system for cases where the approximation models prove inadequate and cause instability during implementation with a real building water network. The RL-based control system can be implemented in various buildings without the need to develop new hydraulic models and can handle the stochastic nature of water demand, ensuring the proactive control system’s effectiveness in maintaining water quality within safe limits for consumption.
ContributorsGhasemzadeh, Kiarash (Author) / Mirchandani, Pitu (Thesis advisor) / Boyer, Treavor (Committee member) / Ju, Feng (Committee member) / Pedrielli, Giulia (Committee member) / Arizona State University (Publisher)
Created2023
193420-Thumbnail Image.png
Description
The escalating global demand for food production underscores the urgent need for sustainable agricultural innovations. This research contributes new insights into the environmental benefits of using urine-derived phosphorus (P) fertilizers by closing the nutrient loop and applying the technology to agricultural food systems. Anticipatory life cycle assessment was used to

The escalating global demand for food production underscores the urgent need for sustainable agricultural innovations. This research contributes new insights into the environmental benefits of using urine-derived phosphorus (P) fertilizers by closing the nutrient loop and applying the technology to agricultural food systems. Anticipatory life cycle assessment was used to quantify the environmental impacts of replacing conventionally mined P fertilizer with recovered urine-derived P fertilizer within the production of beef and plant-based burgers. Results shows that implementing recovered P fertilizer provides greater environmental benefits for all environmental impact categories, with global warming, eutrophication, and water consumption being the main impact categories examined in this study. Urine-derived P fertilizer use in beef burger production led to a 4% reduction in global warming impacts (3% for plant-based), 15% reduction in eutrophication (2% for plant-based), and 42% reduction in water consumption (46% for plant-based). Uncertainty in the results was accounted for using Monte Carlo simulation with 10,000 runs to rank the four burger production scenarios (e.g., conventional and urine-derived beef burger and conventional and urine-derived plant-based burger) based on their environmental impact on global warming, eutrophication, and water use under conditions of baseline, realistic, and maximum uncertainty. Under conditions of realistic uncertainty, implementing urine-derived P fertilizer for beef burger production was considered beneficial for global warming, eutrophication, and water consumption, with 78%, 99%, and 89% of the runs showing environmental benefits, respectively. Due to the lower P fertilizer requirements in plant-based burger production, uncertainty assessment under realistic conditions showed that a reduction in water use was the only expected benefit of implementing recovered P fertilizer, with 71% of the runs providing water use benefits. These results show that closing the nutrient loop by implementing urine-derived P fertilizers can be beneficial when applied to the correct agricultural food system (e.g., beef burger production) and is expected to have the most pronounced benefits with regard to water savings.
ContributorsEvans, Dilan (Author) / Boyer, Treavor (Thesis advisor) / Ravikumar, Dwarak (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2024