Matching Items (231)
Filtering by

Clear all filters

151207-Thumbnail Image.png
Description
This doctoral thesis investigates the predictability characteristics of floods and flash floods by coupling high resolution precipitation products to a distributed hydrologic model. The research hypotheses are tested at multiple watersheds in the Colorado Front Range (CFR) undergoing warm-season precipitation. Rainfall error structures are expected to propagate into hydrologic simulations

This doctoral thesis investigates the predictability characteristics of floods and flash floods by coupling high resolution precipitation products to a distributed hydrologic model. The research hypotheses are tested at multiple watersheds in the Colorado Front Range (CFR) undergoing warm-season precipitation. Rainfall error structures are expected to propagate into hydrologic simulations with added uncertainties by model parameters and initial conditions. Specifically, the following science questions are addressed: (1) What is the utility of Quantitative Precipitation Estimates (QPE) for high resolution hydrologic forecasts in mountain watersheds of the CFR?, (2) How does the rainfall-reflectivity relation determine the magnitude of errors when radar observations are used for flood forecasts?, and (3) What are the spatiotemporal limits of flood forecasting in mountain basins when radar nowcasts are used into a distributed hydrological model?. The methodology consists of QPE evaluations at the site (i.e., rain gauge location), basin-average and regional scales, and Quantitative Precipitation Forecasts (QPF) assessment through regional grid-to-grid verification techniques and ensemble basin-averaged time series. The corresponding hydrologic responses that include outlet discharges, distributed runoff maps, and streamflow time series at internal channel locations, are used in light of observed and/or reference data to diagnose the suitability of fusing precipitation forecasts into a distributed model operating at multiple catchments. Results reveal that radar and multisensor QPEs lead to an improved hydrologic performance compared to simulations driven with rain gauge data only. In addition, hydrologic performances attained by satellite products preserve the fundamental properties of basin responses, including a simple scaling relation between the relative spatial variability of runoff and its magnitude. Overall, the spatial variations contained in gridded QPEs add value for warm-season flood forecasting in mountain basins, with sparse data even if those products contain some biases. These results are encouraging and open new avenues for forecasting in regions with limited access and sparse observations. Regional comparisons of different reflectivity -rainfall (Z-R) relations during three summer seasons, illustrated significant rainfall variability across the region. Consistently, hydrologic errors introduced by the distinct Z-R relations, are significant and proportional (in the log-log space) to errors in precipitation estimations and stream flow magnitude. The use of operational Z-R relations without prior calibration may lead to wrong estimation of precipitation, runoff magnitude and increased flood forecasting errors. This suggests that site-specific Z-R relations, prior to forecasting procedures, are desirable in complex terrain regions. Nowcasting experiments show the limits of flood forecasting and its dependence functions of lead time and basin scale. Across the majority of the basins, flood forecasting skill decays with lead time, but the functional relation depends on the interactions between watershed properties and rainfall characteristics. Both precipitation and flood forecasting skills are noticeably reduced for lead times greater than 30 minutes. Scale dependence of hydrologic forecasting errors demonstrates reduced predictability at intermediate-size basins, the typical scale of convective storm systems. Overall, the fusion of high resolution radar nowcasts and the convenient parallel capabilities of the distributed hydrologic model provide an efficient framework for generating accurate real-time flood forecasts suitable for operational environments.
ContributorsMoreno Ramirez, Hernan (Author) / Vivoni, Enrique R. (Thesis advisor) / Ruddell, Benjamin L. (Committee member) / Gochis, David J. (Committee member) / Mays, Larry W. (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2012
149595-Thumbnail Image.png
Description
The objective of this research was to predict the persistence of potential future contaminants in indirect potable reuse systems. In order to accurately estimate the fates of future contaminants in indirect potable reuse systems, results describing persistence from EPI Suite were modified to include sorption and oxidation. The target future

The objective of this research was to predict the persistence of potential future contaminants in indirect potable reuse systems. In order to accurately estimate the fates of future contaminants in indirect potable reuse systems, results describing persistence from EPI Suite were modified to include sorption and oxidation. The target future contaminants studied were the approximately 2000 pharmaceuticals currently undergoing testing by United States Food and Drug Administration (US FDA). Specific organic substances such as analgesics, antibiotics, and pesticides were used to verify the predicted half-lives by comparing with reported values in the literature. During sub-surface transport, an important component of indirect potable reuse systems, the effects of sorption and oxidation are important mechanisms. These mechanisms are not considered by the quantitative structure activity relationship (QSAR) model predictions for half-lives from EPI Suite. Modifying the predictions from EPI Suite to include the effects of sorption and oxidation greatly improved the accuracy of predictions in the sub-surface environment. During validation, the error was reduced by over 50% when the predictions were modified to include sorption and oxidation. Molecular weight (MW) is an important criteria for estimating the persistence of chemicals in the sub-surface environment. EPI Suite predicts that high MW compounds are persistent since the QSAR model assumes steric hindrances will prevent transformations. Therefore, results from EPI Suite can be very misleading for high MW compounds. Persistence was affected by the total number of halogen atoms in chemicals more than the sum of N-heterocyclic aromatics in chemicals. Most contaminants (over 90%) were non-persistent in the sub-surface environment suggesting that the target future drugs do not pose a significant risk to potable reuse systems. Another important finding is that the percentage of compounds produced from the biotechnology industry is increasing rapidly and should dominate the future production of pharmaceuticals. In turn, pharmaceuticals should become less persistent in the future. An evaluation of indirect potable reuse systems that use reverse osmosis (RO) for potential rejection of the target contaminants was performed by statistical analysis. Most target compounds (over 95%) can be removed by RO based on size rejection and other removal mechanisms.
ContributorsLim, Seung (Author) / Fox, Peter (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2011
149498-Thumbnail Image.png
Description
This study investigates the effect of the virgin granular activated carbon (GAC) on the properties of synthesized iron (hydr)oxide nanoparticles impregnated GAC (Fe-GAC) media and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Fe-GAC media were synthesized from bituminous and lignite-based virgin GAC via three variations of

This study investigates the effect of the virgin granular activated carbon (GAC) on the properties of synthesized iron (hydr)oxide nanoparticles impregnated GAC (Fe-GAC) media and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Fe-GAC media were synthesized from bituminous and lignite-based virgin GAC via three variations of a permanganate/Fe(II) synthesis method. Data obtained from an array of characterization techniques indicated that differences in pore size distribution and surface chemistry of the virgin GAC favor different reaction paths for the iron (hydr)oxide nanoparticles formation. Batch equilibrium isotherm testing (120 µg-As/L; 6 mg-TCE/L, 10 mM NaHCO3 at pH = 7.2 ± 0.1 and pH = 8.2 ± 0.1) showed arsenic removal capability was increased as a result of iron (nanoparticles) impregnation, while TCE removal properties were decreased in Fe-GAC media. This tradeoff was displayed by both lignite and bituminous Fe-GAC but was most pronounced in lignite-based Fe-GAC having the highest Fe content (13.4% Fe) which showed the most favorable Freundlich adsorption and intensity parameters for arsenic of Ka = 72.6 (µg-As/g-FeGAC)(L/µg-As)1
, 1
= 0.6; and least favorable adsorption for TCE of Ka = 0.8 (mg-TCE/g-FeGAC)(L/mg-TCE)1
, 1
= 4.47. It was concluded that iron content was the main factor contributing to enhanced arsenic removal and that this was affected by base GAC properties such as pore size distribution and surface functional groups. However high Fe content can result in pore blockage; reduction in available adsorption sites for organic co-contaminants; and have a significant effect on the Fe-GACs overall adsorption capacity.
ContributorsCooper, Anne Marie (Author) / Hristovski, Kiril D (Thesis advisor) / Olson, Larry W (Committee member) / Edwards, David A. (Committee member) / Arizona State University (Publisher)
Created2010
149392-Thumbnail Image.png
Description
The deterioration of drinking-water quality within distribution systems is a serious cause for concern. Extensive water-quality deterioration often results in violations against regulatory standards and has been linked to water-borne disease outbreaks. The causes for the deterioration of drinking water quality inside distribution systems are not yet fully

The deterioration of drinking-water quality within distribution systems is a serious cause for concern. Extensive water-quality deterioration often results in violations against regulatory standards and has been linked to water-borne disease outbreaks. The causes for the deterioration of drinking water quality inside distribution systems are not yet fully understood. Mathematical models are often used to analyze how different biological, chemical, and physical phenomena interact and cause water quality deterioration inside distribution systems. In this dissertation research I developed a mathematical model, the Expanded Comprehensive Disinfection and Water Quality (CDWQ-E) model, to track water quality changes in chloraminated water. I then applied CDWQ-E to forecast water quality deterioration trends and the ability of Naegleria fowleri (N.fowleri), a protozoan pathogen, to thrive within drinking-water distribution systems. When used to assess the efficacy of substrate limitation versus disinfection in controlling bacterial growth, CDWQ-E demonstrated that bacterial growth is more effectively controlled by lowering substrate loading into distribution systems than by adding residual disinfectants. High substrate concentrations supported extensive bacterial growth even in the presence of high levels of chloramine. Model results also showed that chloramine decay and oxidation of organic matter increase the pool of available ammonia, and thus have potential to advance nitrification within distribution systems. Without exception, trends predicted by CDWQ-E matched trends observed from experimental studies. When CDWQ-E was used to evaluate the ability N. fowleri to survive in finished drinking water, the model predicted that N. fowleri can survive for extended periods of time in distribution systems. Model results also showed that N. fowleri growth depends on the availability of high bacterial densities in the 105 CFU/mL range. Since HPC levels this high are rarely reported in bulk water, it is clear that in distribution systems biofilms are the prime reservoirs N. fowleri because of their high bacterial densities. Controlled laboratory experiments also showed that drinking water can be a source of N. fowleri, and the main reservoir appeared to be biofilms dominated by bacteria. When introduced to pipe-loops N. fowleri successfully attached to biofilms and survived for 5 months.
ContributorsBiyela, Precious Thabisile (Author) / Rittmann, Bruce E. (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Butler, Caitlyn (Committee member) / Arizona State University (Publisher)
Created2010
168418-Thumbnail Image.png
Description
The waterways in the United States are polluted by agricultural, mining, and industrial activities. Recovery of valuable materials, such as energy and nutrients, from these waste streams can improve the economic and environmental sustainability of wastewater treatment. A number of state-of-the-art anaerobic bioreactors have promise for intensified anaerobic biological treatment

The waterways in the United States are polluted by agricultural, mining, and industrial activities. Recovery of valuable materials, such as energy and nutrients, from these waste streams can improve the economic and environmental sustainability of wastewater treatment. A number of state-of-the-art anaerobic bioreactors have promise for intensified anaerobic biological treatment and energy recovery, but they have drawbacks. The drawbacks should be overcome with a novel anaerobic biological wastewater treatment process: the anaerobic biofilm membrane bioreactor (AnBfMBR). This research works aims to advance key components of the AnBfMBR. The AnBfMBR is a hybrid suspended growth and biofilm reactor. The two main components of an AnBfMBR are plastic biofilm carriers and membranes. The plastic biofilm carriers provide the surface onto which the biofilms grow. Membranes provide liquid-solid separation, retention of suspended biomass, and a solids-free effluent. Introducing sufficient surface area promotes the biofilm accumulation of slow-growing methanogens that convert volatile fatty acids into methane gas. Biofilms growing on these surfaces will have a mixed culture that primarily consists of methanogens and inert particulate solids, but also includes some acetogens. Biomass that detaches from biofilms become a component of the suspended growth. A bench-scale AnBfMBR was designed by the AnBfMBR project team and constructed by SafBon Water Technology (SWT). The primary objective of this thesis project was to evaluate the ability of plastic biofilm carriers to minimize ceramic-membrane fouling in the AnBfMBR setting. A systematic analysis of mixing for the bench-scale AnBfMBR was also conducted with the plastic biofilm carriers. Experiments were conducted following a ‘run to failure’ method, in which the ceramic membranes provide filtration, and the time it takes to reach a ‘failure transmembrane pressure (TMP)’ was recorded. The experiments revealed two distinct trends. First, the time to failure TMP decreased as mixed liquor suspended solids concentration (MLSS) concentration increased. Second, increasing the carrier fill extend the time to failure, particularly for higher MLSS concentrations. Taken together, the experiments identified an optimized “sweet spot” for the AnBfMBR: an operating flux of 0.25-m/d, a failure TMP of 0.3-atm pressure, MLSS of 5,000 – 7,500 mg/L, and 40% carrier fill.
ContributorsRoman, Brian Aaron (Author) / Rittmann, Bruce (Thesis advisor) / Boltz, Joshua (Committee member) / Perreault, Francois (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2021
168837-Thumbnail Image.png
Description

Widespread use of halogenated organic compounds for commercial and industrial purposes makes halogenated organic pollutants (HOPs) a global challenge for environmental quality. Current wastewater treatment plants (WWTPs) are successful at reducing chemical oxygen demand (COD), but the removal of HOPs often is poor. Since HOPs are xenobiotics, the biodegradation of

Widespread use of halogenated organic compounds for commercial and industrial purposes makes halogenated organic pollutants (HOPs) a global challenge for environmental quality. Current wastewater treatment plants (WWTPs) are successful at reducing chemical oxygen demand (COD), but the removal of HOPs often is poor. Since HOPs are xenobiotics, the biodegradation of HOPs is usually limited in the WWTPs. The current methods for HOPs treatments (e.g., chemical, photochemical, electrochemical, and biological methods) do have their limitations for practical applications. Therefore, a combination of catalytic and biological treatment methods may overcome the challenges of HOPs removal.This dissertation investigated a novel catalytic and biological synergistic platform to treat HOPs. 4-chlorophenol (4-CP) and halogenated herbicides were used as model pollutants for the HOPs removal tests. The biological part of experiments documented successful co-oxidation of HOPs and analog non-halogenated organic pollutants (OPs) (as the primary substrates) in the continuous operation of O2-based membrane biofilm reactor (O2-MBfR). In the first stage of the synergistic platform, HOPs were reductively dehalogenated to less toxic and more biodegradable OPs during continuous operation of a H2-based membrane catalytic-film reactor (H2-MCfR). The synergistic platform experiments demonstrated that OPs generated in the H2-MCfR were used as the primary substrates to support the co-oxidation of HOPs in the subsequent O2-MBfR. Once at least 90% conversation of HOPs to OPs was achieved in the H2-MCfR, the products (OPs to HOPs mole ratio >9) in the effluent could be completely mineralized through co-oxidation in O2-MBfR. By using H2 gas as the primary substrate, instead adding the analog OP, the synergistic platform greatly reduced chemical costs and carbon-dioxide emissions during HOPs co-oxidation.

ContributorsLuo, Yihao (Author) / Rittmann, Bruce (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2022
171533-Thumbnail Image.png
Description
Corrosion is known to have severe infrastructure integrity implications in a broad range of industries including water and wastewater treatment and reclamation. In the U.S. alone, the total losses due to corrosion in drinking water and wastewater systems can account for economic losses as high as $80 billion dollars a

Corrosion is known to have severe infrastructure integrity implications in a broad range of industries including water and wastewater treatment and reclamation. In the U.S. alone, the total losses due to corrosion in drinking water and wastewater systems can account for economic losses as high as $80 billion dollars a year. Microbially induced corrosion is a complex phenomenon which involve various phases; 1) formation of biofilms on submerged surfaces, 2) creation of micro-environmental niches associated with biofilm growth, 3) altered availability nutrients, 4) changes in the pH and oxygen concentrations. Biofilms can harbor opportunistic or pathogenic bacteria for a long time increasing the risk of pathogen exposure for the end users. The focus of this thesis research was to study the kinetics of microbially induced corrosion of various materials in water and reclaimed water systems. The specific objective was to assess the biofilms formation potential on stainless steel 304, stainless steel 316, galvanized steel, copper, cPVC, glass, carbon steel, and cast iron in water and reclaimed water systems. Experiments were conducted using bioreactor containers, each bioreactor housed four sampling boxes with eight partitions, dedicated to each material type coupon. One bioreactor was stationed at ASU, and one at Vistancia Aquifer Storage and Recovery (ASR) well; while three bioreactors were stationed at Butler facility, at pre-disinfection, post-UV and post-chlorination. From each location, one submerged sampling box was retrieved after 1, 3, 6 and 12 months. Time series of biofilm samples recovered from various types of coupons from different locations were analyzed using physical and culture-based techniques for quantification of biofilms and detection of heterotrophic plate count (HPC) bacteria, Legionella, Mycobacterium, and sulfate reducing bacteria (SRB). After one-year, galvanized steel had the highest concentration of HPC at 4.27 logs while copper had the lowest concentration of 3.08 logs of HPC. Bacterial growth data collected from the SRB tests was compiled to develop a numerical matrix using growth potential, biofilm formation potential and metal reduction potential of SRB isolates. This risk assessment matrix can be a useful tool for the water industry to evaluate the potential risk of MIC in their systems.
ContributorsNeal, Amber (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2022
171598-Thumbnail Image.png
Description
Electroactive bacteria connect biology to electricity, acting as livingelectrochemical catalysts. In nature, these bacteria can respire insoluble compounds like iron oxides, and in the laboratory, they are able to respire an electrode and produce an electrical current. This document investigates two of these electroactive bacteria: Geobacter sulfurreducens and Thermincola ferriacetica.

Electroactive bacteria connect biology to electricity, acting as livingelectrochemical catalysts. In nature, these bacteria can respire insoluble compounds like iron oxides, and in the laboratory, they are able to respire an electrode and produce an electrical current. This document investigates two of these electroactive bacteria: Geobacter sulfurreducens and Thermincola ferriacetica. G. sulfurreducens is a Gramnegative iron-reducing soil bacterium, and T. ferriacetica is a thermophilic, Grampositive bacterium that can reduce iron minerals and several other electron acceptors. Respiring insoluble electron acceptors like metal oxides presents challenges to a bacterium. The organism must extend its electron transport chain from the inner membrane outside the cell and across a significant distance to the surface of the electron acceptor. G. sulfurreducens is one of the most-studied electroactive bacteria, and despite this there are many gaps in knowledge about its mechanisms for transporting electrons extracellularly. Research in this area is complicated by the presence of multiple pathways that may be concurrently expressed. I used cyclic voltammetry to determine which pathways are present in electroactive biofilms of G. sulfurreducens grown under different conditions and correlated this information with gene expression data from the same conditions. This correlation presented several genes that may be components of specific pathways not just at the inner membrane but along the entire respiratory pathway, and I propose an updated model of the pathways in this organism. I also characterized the composition of G. sulfurreducens and found that it has high iron and lipid content independent of growth condition, and the high iron content is explained by the large abundance of multiheme cytochrome expression that I observed. I used multiple microscopy techniques to examine extracellular respiration in G. sulfurreducens, and in the process discovered a novel organelle: the intracytoplasmic membrane. I show 3D reconstructions of the organelle in G. sulfurreducens and discuss its implications for the cell’s metabolism. Finally, I discuss gene expression in T. ferriacetica in RNA samples collected from an anode-respiring culture and highlight the most abundantly expressed genes related to anode-respiring metabolism.
ContributorsHowley, Ethan Thomas (Author) / Torres, César I (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Nannenga, Brent (Committee member) / Arizona State University (Publisher)
Created2022
171569-Thumbnail Image.png
Description
This thesis examines the composition, flow rate, and recyclability of two abundant materials generated in modern society: municipal sewage sludge (SS) generated during conventional wastewater treatment, and single-use plastic packaging (specifically, plastic bottles) manufactured and dispersed by fast-moving consumer goods companies (FMCG). The study found the presence of 5 precious

This thesis examines the composition, flow rate, and recyclability of two abundant materials generated in modern society: municipal sewage sludge (SS) generated during conventional wastewater treatment, and single-use plastic packaging (specifically, plastic bottles) manufactured and dispersed by fast-moving consumer goods companies (FMCG). The study found the presence of 5 precious metals in both American and Chinese sewage sludges. 13 rare elements were found in American sewage sludge while 14 were found in Chinese sewage sludge. Modeling results indicated 251 to 282 million metric tons (MMT) of SS from 2022 to 2050, estimated to contain some 6.8 ± 0.5 MMT of valuable elements in the USA, the reclamation of which is valued at $24B ± $1.6B USD. China is predicted to produce between 819 - 910 MMT of SS between 2022 and 2050 containing an estimated 14.9 ± 1.7 MMT of valuable elements worth a cumulative amount of $94B ± 20B (Chapter 2 and 3). The 4th chapter modeled how much plastic waste Coca-Cola, PespiCo and Nestlé produced and globally dispersed in 21 years: namely an estimated 126 MMT ± 8.7 MMT of plastic. Some 15.6 MMT ± 1.3 MMT (12%) is projected to have become aquatic pollution costing estimated at $286B USD. Some 58 ± 5 MMT or 46% of the total mass were estimated to result in terrestrial plastic pollution, with only minor amounts of 9.9 ± 0.7 MMT, deemed actually recycled. Absent of change, the three companies are predicted to generate an additional 330 ± 15 MMT of plastic by 2050, thereby creating estimated externalities of $8 ± 0.4 trillion USD. The analysis suggests that a small subset of FMCG companies are well positioned to change the current trajectory of global plastic pollution and ocean plastic littering. Chapter 5 examined the barriers to Circular Economy. In an increasingly uncertain post pandemic world, it is becoming progressively important to conserve local resources and extract value from materials that are currently interpreted a “waste” rather than a current or potential future resource.
ContributorsBiyani, Nivedita (Author) / Halden, Rolf U. (Thesis advisor) / Allenby, Braden (Committee member) / Jalbert, Kirk (Committee member) / Arizona State University (Publisher)
Created2022
171577-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the

Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the efficiency of bioremediation in the subsurface. Specifically, I investigated strategies to (i) promote improve microbial reductive dechlorination extent through the addition of Fe0 and (ii) Cr (VI) bio-reduction through enrichment of specialized microbial consortia. Fe0 can enhance microbial TCE reduction by inducing anoxic conditions and generating H2 (electron donor). I first evaluated the effect of Fe0 on microbial reduction of TCE (with ClO4– as co-contaminant) using semi-batch soil microcosms. Results showed that high concentration of Fe0 expected during in situ remediation inhibited microbial TCE and ClO4– reduction when added together with Dehalococcoides mccartyi-containing cultures. A low concentration of aged Fe0 enhanced microbial TCE dechlorination to ethene and supported complete microbial ClO4– reduction. I then evaluated a decoupled Fe0 and biostimulation/bioaugmentation treatment approach using soil packed columns with continuous flow of groundwater. I demonstrated that microbial TCE reductive dechlorination to ethene can be benefitted by Fe0 abiotic reactions, when biostimulation and bioaugmentation are performed downstream of Fe0 addition. Furthermore, I showed that ethene production can be sustained in the presence of aerobic groundwater (after Fe0 exhaustion) by the addition of organic substrates. I hypothesized that some lessons learned from TCE Bioremediation can be applied also for other pollutants that can benefit from anaerobic reductions, like Cr (VI). Bioremediation of Cr (VI) has historically relied on biostimulation of native microbial communities, partially due to the lack of knowledge of the benefits of adding enriched consortia of specialized microorganisms (bioaugmentation). To determine the merits of a specialized consortium on bio-reduction of Cr (VI), I first enriched a culture on lactate and Cr (VI). The culture had high abundance of putative Morganella species and showed rapid and sustained Cr (VI) bio-reduction compared to a subculture grown with lactate only (without Morganella). Overall, this dissertation work documents possible strategies for synergistic abiotic and biotic chlorinated ethenes reduction, and highlights that specialized consortia may benefit Cr (VI) bio-reduction.
ContributorsMohana Rangan, Srivatsan (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2022