Matching Items (470)
Filtering by

Clear all filters

152585-Thumbnail Image.png
Description
Uranium (U) contamination has been attracting public concern, and many researchers are investigating principles and applications of U remediation. The overall goal of my research is to understand the versatile roles of sulfate-reducing bacteria (SRB) in uranium bioremediation, including direct involvement (reducing U) and indirect involvement (protecting U reoxidation). I

Uranium (U) contamination has been attracting public concern, and many researchers are investigating principles and applications of U remediation. The overall goal of my research is to understand the versatile roles of sulfate-reducing bacteria (SRB) in uranium bioremediation, including direct involvement (reducing U) and indirect involvement (protecting U reoxidation). I pursue this goal by studying Desulfovibro vuglaris, a representative SRB. For direct involvement, I performed experiments on uranium bioreduction and uraninite (UO2) production in batch tests and in a H2-based membrane biofilm reactor (MBfR) inoculated with D. vuglaris. In summary, D. vuglaris was able to immobilize soluble U(VI) by enzymatically reducing it to insoluble U(IV), and the nanocrystallinte UO2 was associated with the biomass. In the MBfR system, although D. vuglaris failed to form a biofilm, other microbial groups capable of U(VI) reduction formed a biofilm, and up to 95% U removal was achieved during a long-term operation. For the indirect involvement, I studied the production and characterization of and biogenic iron sulfide (FeS) in batch tests. In summary, D. vuglaris produced nanocrystalline FeS, a potential redox buffer to protect UO2 from remobilization by O2. My results demonstrate that a variety of controllable environmental parameters, including pH, free sulfide, and types of Fe sources and electron donors, significantly determined the characteristics of both biogenic solids, and those characteristics should affect U-sequestrating performance by SRB. Overall, my results provide a baseline for exploiting effective and sustainable approaches to U bioremediation, including the application of the novel MBfR technology to U sequestration from groundwater and biogenic FeS for protecting remobilization of sequestrated U, as well as the microbe-relevant tools to optimize U sequestration applicable in reality.
ContributorsZhou, Chen (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2014
152592-Thumbnail Image.png
Description
Public demands for accountability and educational change are at an all-time high. No Child Left Behind set the stage for public accountability of educators and the recently created Race to the Top grant raised the stakes of public school accountability even more with the creation of national standards and assessments

Public demands for accountability and educational change are at an all-time high. No Child Left Behind set the stage for public accountability of educators and the recently created Race to the Top grant raised the stakes of public school accountability even more with the creation of national standards and assessments as well as public accountability of individual teacher performance based on student test scores. This high-stakes context has placed pressure on local schools to change their instructional practices rapidly to ensure students are learning what they need to in order to perform well on looming Partnership for Assessment of Readiness for College and Careers (PARCC) exams. The purpose of this mixed methods action research study was to explore a shared leadership model and discover the impact of a change facilitation team using the Concerns Based Adoption Model tools on the speed and quality of innovation diffusion at a Title One elementary school. The nine-member change facilitation team received support for 20 weeks in the form of professional development and ongoing team coaching as a means to empower teacher-leaders to more effectively take on the challenges of change. Eight of those members participated in this research. This approach draws on the research on change, learning organizations, and coaching. Quantitative results from the Change Facilitator Stages of Concern Questionnaire were triangulated with qualitative data from interviews, field notes, and Innovation Configuration Maps. Results show the impact on instructional innovation when teacher-leadership is leveraged to support change. Further, there is an important role for change coaches when leading change initiatives. Implications from this study can be used to support other site leaders grappling with instructional innovation and calls for additional research.
ContributorsCruz, Jennifer (Author) / Zambo, Debby (Thesis advisor) / Foulger, Teresa (Committee member) / Tseunis, Paula (Committee member) / Arizona State University (Publisher)
Created2014
152650-Thumbnail Image.png
Description
Hydrocarbon spill site cleanup is challenging when contaminants are present in lower permeability layers. These are difficult to remediate and may result in long-term groundwater impacts. The research goal is to investigate strategies for long-term reduction of contaminant emissions from sources in low permeability layers through partial source treatment at

Hydrocarbon spill site cleanup is challenging when contaminants are present in lower permeability layers. These are difficult to remediate and may result in long-term groundwater impacts. The research goal is to investigate strategies for long-term reduction of contaminant emissions from sources in low permeability layers through partial source treatment at higher/lower permeability interfaces. Conceptually, this provides a clean/reduced concentration zone near the interface, and consequently a reduced concentration gradient and flux from the lower permeability layer. Treatment by in-situ chemical oxidation (ISCO) was evaluated using hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8). H2O2 studies included lab and field-scale distribution studies and lab emission reduction experiments. The reaction rate of H2O2 in soils was so fast it did not travel far (<1 m) from delivery points under typical flow conditions. Oxygen gas generated and partially trapped in soil pores served as a dissolved oxygen (DO) source for >60 days in field and lab studies. During that period, the laboratory studies had reduced hydrocarbon impacts, presumably from aerobic biodegradation, which rebounded once the O2 source depleted. Therefore field monitoring should extend beyond the post-treatment elevated DO. Na2S2O8 use was studied in two-dimensional tanks (122-cm tall, 122-cm wide, and 5-cm thick) containing two contrasting permeability layers (three orders of magnitude difference). The lower permeability layer initially contained a dissolved-sorbed contaminant source throughout this layer, or a 10-cm thick non-aqueous phase liquid (NAPL)-impacted zone below the higher/lower permeability interface. The dissolved-sorbed source tank was actively treated for 14 d. Two hundred days after treatment, the emission reduction of benzene, toluene, ethylbenzene, and p-xylene (BTEX) were 95-99% and methyl tert-butyl ether (MTBE) was 63%. The LNAPL-source tank had three Na2S2O8 and two sodium hydroxide (NaOH) applications for S2O82- base activation. The resulting emission reductions for BTEX, n-propylbenzene, and 1,3,5 trymethylbenzene were 55-73%. While less effective at reducing emissions from LNAPL sources, the 14-d treatment delivered sufficient S2O82- though diffusion to remediate BTEX from the 60 cm dissolved-sorbed source. The overall S2O82- utilization in the dissolved source experiment was calculated by mass balance to be 108-125 g S2O82-/g hydrocarbon treated.
ContributorsCavanagh, Bridget (Author) / Johnson, Paul C (Thesis advisor) / Westerhoff, Paul (Committee member) / Kavazanjian, Edward (Committee member) / Bruce, Cristin (Committee member) / Arizona State University (Publisher)
Created2014
152297-Thumbnail Image.png
Description
This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common

This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common surface water microorganism, was detected in the deep ocean as confirmed by phylogenetic and microbial community functional studies. Six-fold copy number differences between 23S rRNA and 23S rDNA were observed by RT-qPCR, demonstrating the moderate functional activity of detected photosynthetic microbes in the deep ocean including T. pseudonana. Because of the ubiquity of T. pseudonana, it is a good candidate for an early warning system for ocean environmental perturbation monitoring. This early warning system will depend on identifying outlier gene expression at the single-cell level. An early warning system based on single-cell analysis is expected to detect environmental perturbations earlier than population level analysis which can only be observed after a whole community has reacted. Preliminary work using tube-based, two-step RT-qPCR revealed for the first time, gene expression heterogeneity of T. pseudonana under different nutrient conditions. Heterogeneity was revealed by different gene expression activity for individual cells under the same conditions. This single cell analysis showed a skewed, lognormal distribution and helped to find outlier cells. The results indicate that the geometric average becomes more important and representative of the whole population than the arithmetic average. This is in contrast with population level analysis which is limited to arithmetic averages only and highlights the value of single cell analysis. In order to develop a deployable sensor in the ocean, a chip level device was constructed. The chip contains surface-adhering droplets, defined by hydrophilic patterning, that serve as real-time PCR reaction chambers when they are immersed in oil. The chip had demonstrated sensitivities at the single cell level for both DNA and RNA. The successful rate of these chip-based reactions was around 85%. The sensitivity of the chip was equivalent to published microfluidic devices with complicated designs and protocols, but the production process of the chip was simple and the materials were all easily accessible in conventional environmental and/or biology laboratories. On-chip tests provided heterogeneity information about the whole population and were validated by comparing with conventional tube based methods and by p-values analysis. The power of chip-based single-cell analyses were mainly between 65-90% which were acceptable and can be further increased by higher throughput devices. With this chip and single-cell analysis approaches, a new paradigm for robust early warning systems of ocean environmental perturbation is possible.
ContributorsShi, Xu (Author) / Meldrum, Deirdre R. (Thesis advisor) / Zhang, Weiwen (Committee member) / Chao, Shih-hui (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2013
152167-Thumbnail Image.png
Description
Contaminants of emerging concern (CECs) present in wastewater effluent can threat its safe discharge or reuse. Additional barriers of protection can be provided using advanced or natural treatment processes. This dissertation evaluated ozonation and constructed wetlands to remove CECs from wastewater effluent. Organic CECs can be removed by hydroxyl radical

Contaminants of emerging concern (CECs) present in wastewater effluent can threat its safe discharge or reuse. Additional barriers of protection can be provided using advanced or natural treatment processes. This dissertation evaluated ozonation and constructed wetlands to remove CECs from wastewater effluent. Organic CECs can be removed by hydroxyl radical formed during ozonation, however estimating the ozone demand of wastewater effluent is complicated due to the presence of reduced inorganic species. A method was developed to estimate ozone consumption only by dissolved organic compounds and predict trace organic oxidation across multiple wastewater sources. Organic and engineered nanomaterial (ENM) CEC removal in constructed wetlands was investigated using batch experiments and continuous-flow microcosms containing decaying wetland plants. CEC removal varied depending on their physico-chemical properties, hydraulic residence time (HRT) and relative quantities of plant materials in the microcosms. At comparable HRTs, ENM removal improved with higher quantity of plant materials due to enhanced sorption which was verified in batch-scale studies with plant materials. A fate-predictive model was developed to evaluate the role of design loading rates on organic CEC removal. Areal removal rates increased with hydraulic loading rates (HLRs) and carbon loading rates (CLRs) unless photolysis was the dominant removal mechanism (e.g. atrazine). To optimize CEC removal, wetlands with different CLRs can be used in combination without lowering the net HLR. Organic CEC removal in denitrifying conditions of constructed wetlands was investigated and selected CECs (e.g. estradiol) were found to biotransform while denitrification occurred. Although level of denitrification was affected by HRT, similar impact on estradiol was not observed due to a dominant effect from plant biomass quantity. Overall, both modeling and experimental findings suggest considering CLR as an equally important factor with HRT or HLR to design constructed wetlands for CEC removal. This dissertation provided directions to select design parameters for ozonation (ozone dose) and constructed wetlands (design loading rates) to meet organic CEC removal goals. Future research is needed to understand fate of ENMs during ozonation and quantify the contributions from different transformation mechanisms occurring in the wetlands to incorporate in a model and evaluate the effect of wetland design.
ContributorsSharif, Fariya (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Fox, Peter (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2013
152515-Thumbnail Image.png
Description
Recently, a student in a Maricopa County, Arizona area school district drowned during a physical education class, resulting in a heightened awareness of school aquatics safety guidelines. The goal of this study was to use Wenger's idea of nurturing a Community of Practice (CoP) with the existing physical education CoP

Recently, a student in a Maricopa County, Arizona area school district drowned during a physical education class, resulting in a heightened awareness of school aquatics safety guidelines. The goal of this study was to use Wenger's idea of nurturing a Community of Practice (CoP) with the existing physical education CoP at GFJRHS (school pseudonym), to examine the current curriculum and enhance the program and safety standards. The study duration was a five-week period; the participants were 7th grade males. This action research addressed the following questions: 1.)To what extent does the new swim curriculum increase students' (a) self-efficacy for swimming, (b) self-efficacy for water safety, (c) perception of swim skills, and (d) perception of water safety skills? 2.) How, and to what extent, do students value different observational learning techniques presented during the swim unit? 3.) To what extent does the new swim curriculum increase students' swimming capabilities? 4.) How does working as a Community of Practice influence implementing an enhanced swim curriculum? 5.) What challenges and improvements do participants report during the enhanced curriculum? A triangulation mixed methods design was used to determine whether observational learning techniques and mini aquatics safety lessons incorporated into the curriculum improved students' swimming ability, self-efficacy, and safety knowledge. Pre-and post-test swim assessments, pre- and post-test surveys, focus group interviews and researcher journal observations provided data for the study. Both quantitative and qualitative data were collected to integrate the strengths of the varied forms of research. Cronbach's coefficient α was computed for the reliability of the survey and a multivariate repeated measures analysis of variance (ANOVA) was conducted to determine whether the new swim curriculum increased students' self-efficacy for swimming, self-efficacy for water safety, perception of swim skills, perception of water safety skills, and swimming capabilities. Results of this study indicated students' self-efficacy and perception of water safety skills increased, students' ability and perception of swimming skills increased, students valued all observational learning techniques, and teachers felt that functioning as a CoP was crucial to the process.
ContributorsJonaitis, Sean (Author) / Wetzel, Keith A (Thesis advisor) / Ewbank, Ann D (Thesis advisor) / Darst, Paul W. (Committee member) / Arizona State University (Publisher)
Created2014
152517-Thumbnail Image.png
Description
ABSTRACT Education policymakers at the national level have initiated reforms in K-12 education for that past several years that have focused on teacher quality and teacher evaluation. More recently, reforms have included legislation that focuses on administrator quality as well. Included in far-reaching recent legislation in Arizona is a requirement

ABSTRACT Education policymakers at the national level have initiated reforms in K-12 education for that past several years that have focused on teacher quality and teacher evaluation. More recently, reforms have included legislation that focuses on administrator quality as well. Included in far-reaching recent legislation in Arizona is a requirement that administrators be evaluated on a standards-based evaluation system that is linked to student outcomes. The end result is an annual summative measure of administrator effectiveness that impacts job retention. Because of this, Arizona administrators have become concerned about rapidly becoming proficient in the new evaluation systems. Administrators rarely have the explicit professional development opportunities they need to collaborate on a shared understanding of these new evaluation systems. This action research study focused on a group of eight administrators in a small urban district grappling with a new, complex, and high-stakes administrator evaluation that is a component of an all-encompassing Teacher Incentive Fund Grant. An existing professional learning time was engaged to assist administrators in lessening their concerns and increasing their understanding and use of the evaluation instrument. Activities were designed to engage the administrators in dynamic, contextualized learning. Participants interacted in a group to interpret the meaning of the evaluation instrument share practical knowledge and support each other's acquisition understanding. Data were gathered with mixed methods. Administrators were given pre-and post-surveys prior to and immediately after this six-week innovation. Formal and informal interviews were conduct throughout the innovation. Additionally, detailed records in the form of meeting records and a researcher journal were kept. Qualitative and quantitative data were triangulated to validate findings. Results identified concerns and understanding of administrators as they attempted to come to a shared understanding of the new evaluation instrument. As a result of learning together, their concerns about the use of the instrument lessened. Other concerns however, remained or increased. Administrators found the process of the Administrator Learning Community valuable and felt their understanding and use of the instrument had increased. Intense concerns about the competing priorities and initiatives led to the administrators to consider a reevaluation of the competing initiatives. Implications from this study can be used to help other administrators and professional development facilitators grappling with common concerns.
ContributorsEsmont, Leah W (Author) / Wetzel, Keith (Thesis advisor) / Ewbank, Ann (Thesis advisor) / McNeil, David (Committee member) / Arizona State University (Publisher)
Created2014
151844-Thumbnail Image.png
Description
The purpose of the study is to explore the identity development and organizational culture of a student organization, the National Association of Latino Fraternal Organizations council (NALFO) by implementing a community of practice approach at a large, public university in southwestern United States. The objective is to construct a sustainable

The purpose of the study is to explore the identity development and organizational culture of a student organization, the National Association of Latino Fraternal Organizations council (NALFO) by implementing a community of practice approach at a large, public university in southwestern United States. The objective is to construct a sustainable camaraderie among the existing Latino fraternal organizations at the university to influence leadership development, work toward a common vision, and a cohesive and systematic approach to collaboration, consequently transforming organizational culture. This study investigates the factors that contribute to and/or inhibit increased communication and collaboration and to describe the experiences of Latino fraternal members who are purposefully engaged in a community of practice. There are 57 fraternal organizations in five umbrella councils at the university, including predominately Caucasian, historically African American, Latino, and Multicultural groups, whose platforms are commonly leadership, scholarship, and philanthropy. This action research examines the experiences of six NALFO members individually and working as a community with the guidance of a mentor (the researcher). The researcher employs use of an anonymous initial and post electronic survey, a participant personal statement, an intentional and purposeful community of practice, a semi-structured individual interview, and focus groups to collect data. Findings suggest that length of membership and fraternal experience influence participant responses; however, the themes remain consistent. Building relationships, perception (by members and outsiders), identity development, organizational management, and challenging perspectives (from outside influences) are factors that influence the organizational culture of the organization. On the post electronic survey all participants indicate that the implementation of an intentional community of practice can benefit the organization by encouraging participation and increasing communication. While participants suggest activities for encouraging member engagement, they determine that actual participation would be dependent on individual motivation.
ContributorsHeredia, Anna-Maria (Author) / Rund, James (Thesis advisor) / Calleroz White, Mistalene (Thesis advisor) / Corey, Frederick (Committee member) / Arizona State University (Publisher)
Created2013
152624-Thumbnail Image.png
Description
Peer learning is one of the longest established and most intensively researched forms of learning. As a form of peer learning, peer tutoring is characterized by specific role-taking as tutor or tutee with high focus on curriculum content. In the late 18th century, Andrew Bell undoubtedly became the first person

Peer learning is one of the longest established and most intensively researched forms of learning. As a form of peer learning, peer tutoring is characterized by specific role-taking as tutor or tutee with high focus on curriculum content. In the late 18th century, Andrew Bell undoubtedly became the first person in the world to use peer tutoring in a systematic fashion within a school setting. Due to its miraculous success, Bell affirmed that peer tutoring was the new method of practical education and was essential to every academic institution. Early in American education, teachers relied on certain students to teach others (i.e., peer tutoring) but this occurred on an informal, impromptu, as needed basis. This type of peer tutoring lasted well into the 20th century. A recent change in the traditional face of peer tutoring arrangements for U.S. schools has occurred due to more than 30 years of research at four major tutoring centers. Peer tutoring has moved away from an informal and casual approach to a more formal and robust method of teaching and learning. However, at the researcher's high school, peer tutoring was still very casual, informal, and practically non-existent. Consequently, the researcher created a peer tutoring club, and developed, and implemented a peer tutoring program. The researcher conducted a mixed-methods study with design-based research (DBR) as the preferred research design in order to discover what constitutes an ideal peer tutor and an ideal peer tutoring session. The researcher utilized qualitative means to analyze the following data: 1) field notes, 2) impromptu interviews, 3) questionnaires, 4) focus group interviews, and 5) a semi-structured interview. The researcher utilized quantitative means to analyze the following data: 1) sessions tutored survey and 2) archival data (e.g., daily attendance, school records). Analysis of qualitative and quantitative data suggested that the ideal peer tutor was qualified (e.g., desire, character traits, content mastery), trained (e.g., responsibilities, methodologies, procedures), and experienced. Likewise, in addition to having an ideal peer tutor, an ideal peer tutoring session took place in an environment conducive to learning and tutees were prepared and actively participated.
ContributorsJohnson, Brian (Author) / Carlson, David (Thesis advisor) / Barnard, Wendy (Committee member) / Moore, David (Committee member) / Arizona State University (Publisher)
Created2014
152626-Thumbnail Image.png
Description
The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic matter (NOM), contaminants of emerging concern (CECs), and microbial extracellular

The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic matter (NOM), contaminants of emerging concern (CECs), and microbial extracellular polymeric substances (EPS). The goal of my dissertation was to quantify the impacts of extreme weather events on DOM in surface water and downstream treatment processes, and to improve membrane filtration efficiency and CECs oxidation efficiency during water reclamation with ozone. Surface water quality, air quality and hydrologic flow rate data were used to quantify changes in DOM and turbidity following dust storms, flooding, or runoff from wildfire burn areas in central Arizona. The subsequent impacts to treatment processes and public perception of water quality were also discussed. Findings showed a correlation between dust storm events and change in surface water turbidity (R2=0.6), attenuation of increased DOM through reservoir systems, a 30-40% increase in organic carbon and a 120-600% increase in turbidity following severe flooding, and differing impacts of upland and lowland wildfires. The use of ozone to reduce membrane fouling caused by vesicles (a subcomponent of EPS) and oxidize CECs through increased hydroxyl radical (HO●) production was investigated. An "ozone dose threshold" was observed above which addition of hydrogen peroxide increased HO● production; indicating the presence of ambient promoters in wastewater. Ozonation of CECs in secondary effluent over titanium dioxide or activated carbon did not increase radial production. Vesicles fouled ultrafiltration membranes faster (20 times greater flux decline) than polysaccharides, fatty acids, or NOM. Based upon the estimated carbon distribution of secondary effluent, vesicles could be responsible for 20-60% of fouling during ultrafiltration and may play a vital role in other environmental processes as well. Ozone reduced vesicle-caused membrane fouling that, in conjunction with the presence of ambient promoters, helps to explain why low ozone dosages improve membrane flux during full-scale water reclamation.
ContributorsBarry, Michelle (Author) / Barry, Michelle C (Thesis advisor) / Westerhoff, Paul (Committee member) / Fox, Peter (Committee member) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2014