Matching Items (34)

Filtering by

Clear all filters

151951-Thumbnail Image.png

The development and evaluation of biofuel production systems on marginal land

Description

The consumption of feedstocks from agriculture and forestry by current biofuel production has raised concerns about food security and land availability. In the meantime, intensive human activities have created a large amount of marginal lands that require management. This study

The consumption of feedstocks from agriculture and forestry by current biofuel production has raised concerns about food security and land availability. In the meantime, intensive human activities have created a large amount of marginal lands that require management. This study investigated the viability of aligning land management with biofuel production on marginal lands. Biofuel crop production on two types of marginal lands, namely urban vacant lots and abandoned mine lands (AMLs), were assessed. The investigation of biofuel production on urban marginal land was carried out in Pittsburgh between 2008 and 2011, using the sunflower gardens developed by a Pittsburgh non-profit as an example. Results showed that the crops from urban marginal lands were safe for biofuel. The crop yield was 20% of that on agricultural land while the low input agriculture was used in crop cultivation. The energy balance analysis demonstrated that the sunflower gardens could produce a net energy return even at the current low yield. Biofuel production on AML was assessed from experiments conducted in a greenhouse for sunflower, soybean, corn, canola and camelina. The research successfully created an industrial symbiosis by using bauxite as soil amendment to enable plant growth on very acidic mine refuse. Phytoremediation and soil amendments were found to be able to effectively reduce contamination in the AML and its runoff. Results from this research supported that biofuel production on marginal lands could be a unique and feasible option for cultivating biofuel feedstocks.

Contributors

Agent

Created

Date Created
2013

150162-Thumbnail Image.png

Analysis of photocatalysis for precursor removal and formation inhibition of disinfection byproducts

Description

Disinfection byproducts are the result of reactions between natural organic matter (NOM) and a disinfectant. The formation and speciation of DBP formation is largely dependent on the disinfectant used and the natural organic matter (NOM) concentration and composition. This study

Disinfection byproducts are the result of reactions between natural organic matter (NOM) and a disinfectant. The formation and speciation of DBP formation is largely dependent on the disinfectant used and the natural organic matter (NOM) concentration and composition. This study examined the use of photocatalysis with titanium dioxide for the oxidation and removal of DBP precursors (NOM) and the inhibition of DBP formation. Water sources were collected from various points in the treatment process, treated with photocatalysis, and chlorinated to analyze the implications on total trihalomethane (TTHM) and the five haloacetic acids (HAA5) formations. The three sub-objectives for this study included: the comparison of enhanced and standard coagulation to photocatalysis for the removal of DBP precursors; the analysis of photocatalysis and characterization of organic matter using size exclusion chromatography and fluorescence spectroscopy and excitation-emission matrices; and the analysis of photocatalysis before GAC filtration. There were consistencies in the trends for each objective including reduced DBP precursors, measured as dissolved organic carbon DOC concentration and UV absorbance at 254 nm. Both of these parameters decreased with increased photocatalytic treatment and could be due in part to the adsorption to as well as the oxidation of NOM on the TiO2 surface. This resulted in lower THM and HAA concentrations at Medium and High photocatalytic treatment levels. However, at No UV exposure and Low photocatalytic treatment levels where oxidation reactions were inherently incomplete, there was an increase in THM and HAA formation potential, in most cases being significantly greater than those found in the raw water or Control samples. The size exclusion chromatography (SEC) results suggest that photocatalysis preferentially degrades the higher molecular mass fraction of NOM releasing lower molecular mass (LMM) compounds that have not been completely oxidized. The molecular weight distributions could explain the THM and HAA formation potentials that decreased at the No UV exposure samples but increased at Low photocatalytic treatment levels. The use of photocatalysis before GAC adsorption appears to increase bed life of the contactors; however, higher photocatalytic treatment levels have been shown to completely mineralize NOM and would therefore not require additional GAC adsorption after photocatalysis.

Contributors

Agent

Created

Date Created
2011

150904-Thumbnail Image.png

Evaluation of ecolabelling criteria using life cycle assessment

Description

Ecolabels are the main driving force of consumer knowledge in the realm of sustainable product purchasing. While ecolabels strive to improve consumer's purchasing decisions, they have overwhelmed the market, leaving consumers confused and distrustful of what each label means. This

Ecolabels are the main driving force of consumer knowledge in the realm of sustainable product purchasing. While ecolabels strive to improve consumer's purchasing decisions, they have overwhelmed the market, leaving consumers confused and distrustful of what each label means. This study attempts to validate and understand environmental concerns commonly found in ecolabel criteria and the implications they have within the life cycle of a product. A life cycle assessment (LCA) case study of cosmetic products is used in comparison with current ecolabel program criteria to assess whether or not ecolabels are effectively driving environmental improvements in high impact areas throughout the life cycle of a product. Focus is placed on determining the general issues addressed by ecolabelling criteria and how these issues relate to hotspots derived through a practiced scientific methodology. Through this analysis, it was determined that a majority the top performing supply chain environmental impacts are covered, in some fashion, within ecolabelling criteria, but some, such as agricultural land occupation, are covered to a lesser extent or not at all. Additional criteria are suggested to fill the gaps found in ecolabelling programs and better address the environmental impacts most pertinent to the supply chain. Ecolabels have also been found to have a broader coverage then what can currently be addressed using LCA. The results of this analysis have led to a set of recommendations for furthering the integration between ecolabels and life cycle tools.

Contributors

Agent

Created

Date Created
2012

150907-Thumbnail Image.png

Analysis and modeling of residual compounds in process streams from U.S. wastewater treatment plants

Description

The presence of compounds such as pharmaceuticals and personal care products (PPCPs) in the environment is a cause for concern as they exhibit secondary effects on non-target organisms and are also indicative of incomplete removal by wastewater treatment plants (WWTPs)

The presence of compounds such as pharmaceuticals and personal care products (PPCPs) in the environment is a cause for concern as they exhibit secondary effects on non-target organisms and are also indicative of incomplete removal by wastewater treatment plants (WWTPs) during water reclamation. Analytical methods and predictive models can help inform on the rates at which these contaminants enter the environment via biosolids use or wastewater effluent release to estimate the risk of adverse effects. The goals of this research project were to integrate the results obtained from the two different methods of risk assessment, (a) in silico modeling and (b) experimental analysis. Using a previously published empirical model, influent and effluent concentration ranges were predicted for 10 sterols and validated with peer-reviewed literature. The in silico risk assessment analysis performed for sterols and hormones in biosolids concluded that hormones possess high leaching potentials and that particularly 17-α-ethinyl estradiol (EE2) can pose significant threat to fathead minnows (P. promelas) via leaching from terrestrial depositions of biosolids. Six mega-composite biosolids samples representative of 94 WWTPs were analyzed for a suite of 120 PPCPs using the extended U.S. EPA Method 1694 protocol. Results indicated the presence of 26 previously unmonitored PPCPs in the samples with estimated annual release rates of 5-15 tons yr-1 via land application of biosolids. A mesocosm sampling analysis that was included in the study concluded that four compounds amitriptyline, paroxetine, propranolol and sertraline warrant further monitoring due to their high release rates from land applied biosolids and their calculated extended half-lives in soils. There is a growing interest in the scientific community towards the development of new analytical protocols for analyzing solid matrices such as biosolids for the presence of PPCPs and other established and emerging contaminants of concern. The two studies presented here are timely and an important addition to the increasing base of scientific articles regarding environmental release of PPCPs and exposure risks associated with biosolids land application. This research study emphasizes the need for coupling experimental results with predictive analytical modeling output in order to more fully assess the risks posed by compounds detected in biosolids.

Contributors

Agent

Created

Date Created
2012

150177-Thumbnail Image.png

Water-energy nexus insight: optimization of source waters for DBP control

Description

Local municipalities in the Phoenix Metropolitan Area have voiced an interest in purchasing alternate source water with lower DBP precursors. Along the primary source is a hydroelectric dam in which water will be diverted from. This project is an assessment

Local municipalities in the Phoenix Metropolitan Area have voiced an interest in purchasing alternate source water with lower DBP precursors. Along the primary source is a hydroelectric dam in which water will be diverted from. This project is an assessment of optimizing the potential blends of source water to a water treatment plant in an effort to enable them to more readily meet DBP regulations. To perform this analysis existing water treatment models were used in conjunction with historic water quality sampling data to predict chemical usage necessary to meet DBP regulations. A retrospective analysis was performed for the summer months of 2007 regarding potential for the WTP to reduce cost through optimizing the source water by an average of 30% over the four-month period, accumulating to overall treatment savings of $154 per MG ($82 per AF).

Contributors

Agent

Created

Date Created
2011

150317-Thumbnail Image.png

The Siemens hybrid process: mathematical modeling and analysis of an innovative and sustainable pilot wastewater treatment process

Description

To address sustainability issues in wastewater treatment (WWT), Siemens Water Technologies (SWT) has designed a "hybrid" process that couples common activated sludge (AS) and anaerobic digestion (AD) technologies with the novel concepts of AD sludge recycle and biosorption. At least

To address sustainability issues in wastewater treatment (WWT), Siemens Water Technologies (SWT) has designed a "hybrid" process that couples common activated sludge (AS) and anaerobic digestion (AD) technologies with the novel concepts of AD sludge recycle and biosorption. At least 85% of the hybrid's AD sludge is recycled to the AS process, providing additional sorbent for influent particulate chemical oxygen demand (PCOD) biosorption in contact tanks. Biosorbed PCOD is transported to the AD, where it is converted to methane. The aim of this study is to provide mass balance and microbial community analysis (MCA) of SWT's two hybrid and one conventional pilot plant trains and mathematical modeling of the hybrid process including a novel model of biosorption. A detailed mass balance was performed on each tank and the overall system. The mass balance data supports the hybrid process is more sustainable: It produces 1.5 to 5.5x more methane and 50 to 83% less sludge than the conventional train. The hybrid's superior performance is driven by 4 to 8 times longer solid retention times (SRTs) as compared to conventional trains. However, the conversion of influent COD to methane was low at 15 to 22%, and neither train exhibited significant nitrification or denitrification. Data were inconclusive as to the role of biosorption in the processes. MCA indicated the presence of Archaea and nitrifiers throughout both systems. However, it is inconclusive as to how active Archaea and nitrifiers are under anoxic, aerobic, and anaerobic conditions. Mathematical modeling confirms the hybrid process produces 4 to 20 times more methane and 20 to 83% less sludge than the conventional train under various operating conditions. Neither process removes more than 25% of the influent nitrogen or converts more that 13% to nitrogen gas due to biomass washout in the contact tank and short SRTs in the stabilization tank. In addition, a mathematical relationship was developed to describe PCOD biosorption through adsorption to biomass and floc entrapment. Ultimately, process performance is more heavily influenced by the higher AD SRTs attained when sludge is recycled through the system and less influenced by the inclusion of biosorption kinetics.

Contributors

Agent

Created

Date Created
2011

153246-Thumbnail Image.png

Legionella-- a threat to groundwater, pathogen transport through recharge basin media columns

Description

This study was devised to elucidate key information concerning the potential risk posed by Legionella in reclaimed water. A series of biological experiments and a recharge basin soil column study were conducted to examine the survival, growth, and transport of

This study was devised to elucidate key information concerning the potential risk posed by Legionella in reclaimed water. A series of biological experiments and a recharge basin soil column study were conducted to examine the survival, growth, and transport of L. pneumophila through engineered reclaimed water systems. A pilot-scale, column study was set up to measure Legionella transport in the columns under Arizona recharge basin conditions. Two columns, A and B, were packed to a depth of 122 cm with a loamy sand media collected from a recharge basin in Mesa, Arizona. The grain size distribution of Column A differed from that of Column B by the removal of fines passing the #200 sieve. The different soil profiles represented by column A and B allowed for further investigation of soil attributes which influence the microbial transport mechanism. Both clear PVC columns stand at a height of 1.83 m with an inner diameter of 6.35 cm. Sampling ports were drilled into the column at the soil depths 15, 30, 60, 92, 122 cm. Both columns were acclimated with tertiary treated waste water and set to a flow rate of approximately 1.5 m/d. The columns were used to assess the transport of a bacterial indicator, E. coli, in addition to assessing the study's primary pathogen of concern, Legionella. Approximately, 〖10〗^7 to 〖10〗^9 E. coli cells or 〖10〗^6 to 〖10〗^7Legionella cells were spiked into the columns' head waters for each experiment. Periodically, samples were collected from each column's sampling ports, until a minimum of three pore volume passed through the columns.

The pilot-scale, column study produced novel results which demonstrated the mechanism for Legionella to be transported through recharge basin soil. E. coli was transported, through 122 cm of the media in under 6 hours, whereas, Legionella was transported, through the same distance, in under 30 hours. Legionella has been shown to survive in low nutrient conditions for over a year. Given the novel results of this proof of concept study, a claim can be made for the transport of Legionella into groundwater aquifers through engineering recharge basin conditions, in Central Arizona.

Contributors

Agent

Created

Date Created
2014

153560-Thumbnail Image.png

Recycling water and nutrients when producing the cyanobacterium Synechocystis sp. PCC 6803

Description

Large-scale cultivation of photosynthetic microorganisms for the production of biodiesel and other valuable commodities must be made more efficient. Recycling the water and nutrients acquired from biomass harvesting promotes a more sustainable and economically viable enterprise. This study

Large-scale cultivation of photosynthetic microorganisms for the production of biodiesel and other valuable commodities must be made more efficient. Recycling the water and nutrients acquired from biomass harvesting promotes a more sustainable and economically viable enterprise. This study reports on growing the cyanobacterium Synechocystis sp. PCC 6803 using permeate obtained from concentrating the biomass by cross-flow membrane filtration. I used a kinetic model based on the available light intensity (LI) to predict biomass productivity and evaluate overall performance.

During the initial phase of the study, I integrated a membrane filter with a bench-top photobioreactor (PBR) and created a continuously operating system. Recycling permeate reduced the amount of fresh medium delivered to the PBR by 45%. Biomass production rates as high as 400 mg-DW/L/d (9.2 g-DW/m2/d) were sustained under constant lighting over a 12-day period.

In the next phase, I operated the system as a sequencing batch reactor (SBR), which improved control over nutrient delivery and increased the concentration factor of filtered biomass (from 1.8 to 6.8). I developed unique system parameters to compute the amount of recycled permeate in the reactor and the actual hydraulic retention time during SBR operation. The amount of medium delivered to the system was reduced by up to 80%, and growth rates were consistent at variable amounts of repeatedly recycled permeate. The light-based model accurately predicted growth when biofilm was not present. Coupled with mass ratios for PCC 6803, these predictions facilitated efficient delivery of nitrogen and phosphorus. Daily biomass production rates and specific growth rates equal to 360 mg-DW/L/d (8.3 g/m2/d) and 1.0 d-1, respectively, were consistently achieved at a relatively low incident LI (180 µE/m2/s). Higher productivities (up to 550 mg-DW/L/d) occurred under increased LI (725 µE/m2/s), although the onset of biofilm impeded modeled performance.

Permeate did not cause any gradual growth inhibition. Repeated results showed cultures rapidly entered a stressed state, which was followed by widespread cell lysis. This phenomenon occurred independently of permeate recycling and was not caused by nutrient starvation. It may best be explained by negative allelopathic effects or viral infection as a result of mixed culture conditions.

Contributors

Agent

Created

Date Created
2015

150939-Thumbnail Image.png

Investigation into Bacteroides persistence in drinking water distribution systems and alternative methods to detect this fecal indicator

Description

Bacteroides have been suggested as alternative indicators of fecal pollution since they are highly abundant in feces and are thought to have limited potential to grow in environment. However, recent literature suggests that Bacteroides can potentially survive within water distribution

Bacteroides have been suggested as alternative indicators of fecal pollution since they are highly abundant in feces and are thought to have limited potential to grow in environment. However, recent literature suggests that Bacteroides can potentially survive within water distribution systems. The first objective of this study was therefore to investigate the validity of Bacteroides as a fecal indicator for drinking water through laboratory experiments and field studies. Experiments were performed using a laboratory scale PVC model water distribution system that was spiked with 109 Bacteroides. Samples were collected over the following four and analyzed by culture and molecular-based techniques. Second, field studies were performed by collecting water meters from two large chlorinated water distribution systems in central Arizona. Upon removal for repair by city personnel, meters were collected and biofilms samples were gathered within two hours. The biofilms were then analyzed using culture and molecular-based assays. The results from these studies support the hypothesis that Bacteroides DNA may be found in water distribution systems despite the difficulty of cultivating these bacterial cells. These experiments present the importance of considering biofilm interactions with fecal indicator bacteria when performing molecular assays on environmental samples, as biofilms may provide protection from high oxygen concentrations and grazing protozoa in bulk water that limit the persistence Bacteroides in the environment. Although the significance of biofilm interactions with surface or recreational waters may be small, they are likely important when considering drinking water delivered through distribution systems. The second objective of this study was to investigate alternative detection methodologies for the fecal indicator Bacteroides. In particular, this study focused on using a simplified protocol of Nucleic Acid Sequence Based Amplification (NASBA) and Thermophilic Helicase-Dependent Amplification (tHDA) to amplify the highly conserved 16s rRNA gene in the genomic DNA of fecal indicator Bacteroides. The results of this study show that the simplified NASBA procedure was not able to amplify the target, while continuous problems with tHDA exposed the methods lack of reliability. These results suggest higher reliability in the isothermal amplification methods needs to be achieved before application to environmental samples.

Contributors

Agent

Created

Date Created
2012

152744-Thumbnail Image.png

Improving our understanding of source zones at petroleum impacted sites through physical model studies

Description

Characterization of petroleum spill site source zones directly influences the selection of corrective action plans and frequently affects the success of remediation efforts. For example, simply knowing whether or not nonaqueous phase liquid (NAPL) is present, or if there is

Characterization of petroleum spill site source zones directly influences the selection of corrective action plans and frequently affects the success of remediation efforts. For example, simply knowing whether or not nonaqueous phase liquid (NAPL) is present, or if there is chemical storage in less hydraulically accessible regions, will influence corrective action planning. The overarching objective of this study was to assess if macroscopic source zone features can be inferred from dissolved concentration vs. time data. Laboratory-scale physical model studies were conducted for idealized sources; defined as Type-1) NAPL-impacted high permeability zones, Type-2) NAPL-impacted lower permeability zones, and Type-3) dissolved chemical matrix storage in lower permeability zones. Aquifer source release studies were conducted using two-dimensional stainless steel flow-through tanks outfitted with sampling ports for the monitoring of effluent concentrations and flow rates. An idealized NAPL mixture of key gasoline components was used to create the NAPL source zones, and dissolved sources were created using aqueous solutions having concentrations similar to water in equilibrium with the NAPL sources. The average linear velocity was controlled by pumping to be about 2 ft/d, and dissolved effluent concentrations were monitored daily. The Type-1 experiment resulted in a source signature similar to that expected for a relatively well-mixed NAPL source, with dissolved concentrations dependent on chemical solubility and initial mass fraction. The Type-2 and Type-3 experiments were conducted for 320 d and 190 d respectively. Unlike the Type-1 experiment, the concentration vs. time behavior was similar for all chemicals, for both source types. The magnitudes of the effluent concentrations varied between the Type-2 and Type-3 experiments, and were related to the hydrocarbon source mass. A fourth physical model experiment was performed to identify differences between ideal equilibrium behavior and the source concentration vs. time behavior observed in the tank experiments. Screening-level mathematical models predicted the general behavior observed in the experiments. The results of these studies suggest that dissolved concentration vs. time data can be used to distinguish between Type-1 sources in transmissive zones and Type-2 and Type-3 sources in lower permeability zones, provided that many years to decades of data are available. The results also suggest that concentration vs. time data alone will be insufficient to distinguish between NAPL and dissolved-phase storage sources in lower permeability regions.

Contributors

Agent

Created

Date Created
2014