Matching Items (10)
Filtering by

Clear all filters

157473-Thumbnail Image.png
Description
The goal of this research was to study the effect of dilution on ammonium and potassium removal from real hydrolyzed urine. The performance of two natural zeolites, clinoptilolite and chabazite, was studied and compared with the help of batch equilibrium experiments at four dilution levels: 100%, 10%, 1% and 0.1%

The goal of this research was to study the effect of dilution on ammonium and potassium removal from real hydrolyzed urine. The performance of two natural zeolites, clinoptilolite and chabazite, was studied and compared with the help of batch equilibrium experiments at four dilution levels: 100%, 10%, 1% and 0.1% (urine volume/total solution volume). Further, the sorption behavior of other exchangeable ions (sodium, calcium and magnesium) in clinoptilolite and chabazite was studied to improve the understanding of ion exchange stoichiometry. Ammonium and potassium removal were highest at undiluted level in samples treated with clinoptilolite. This is a key finding as it illustrates the benefit of urine source separation. Chabazite treated samples showed highest ammonium and potassium removal at undiluted level at lower doses. At higher doses, potassium removal was similar in undiluted and 10% urine solutions whereas ammonium removal was the highest in 10% urine solutions. In general, chabazite showed higher ammonium and potassium removal than clinoptilolite. The result showed that ion exchange was stoichiometric in solutions with higher urine volumes.
ContributorsRegmi, Urusha (Author) / Boyer, Treavor H (Thesis advisor) / Delgado, Anca G (Committee member) / Hamilton, Kerry (Committee member) / Arizona State University (Publisher)
Created2019
156559-Thumbnail Image.png
Description
This research explores microbial chain elongation as a pathway for production of complex organic compounds in soils with implication for the carbon cycle. In chain elongation, simple substrates such as ethanol and short chain carboxylates such as acetate can be converted to longer carbon chain carboxylates under anaerobic conditions through

This research explores microbial chain elongation as a pathway for production of complex organic compounds in soils with implication for the carbon cycle. In chain elongation, simple substrates such as ethanol and short chain carboxylates such as acetate can be converted to longer carbon chain carboxylates under anaerobic conditions through cyclic, reverse β oxidation. This pathway elongates the carboxylate by two carbons. The chain elongation process is overall thermodynamically feasible, and microorganisms gain energy through this process. There have been limited insights into the versatility of chain elongating substrates, understanding the chain elongating microbial community, and its importance in sequestering carbon in the soils.

We used ethanol, methanol, butanol, and hydrogen as electron donors and acetate and propionate as electron acceptors to test the occurrence of microbial chain elongation in four soils with different physicochemical properties and microbial communities. Common chain elongation products were the even numbered chains butyrate, caproate, and butanol, the odd numbered carboxylates valerate and heptanoate, along with molecular hydrogen. At a near neutral pH and mesophilic temperature, we observed a stable and sustained production of longer fatty acids along with hydrogen. Microbial community analysis show phylotypes from families such as Clostridiaceae, Bacillaceae, and Ruminococcaceae in all tested conditions. Through chain elongation, the products formed are less biodegradable. They may undergo transformations and end up as organic carbon, decreasing the greenhouse gas emissions, thus, making this process important to study.
ContributorsJoshi, Sayalee (Author) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2018
154683-Thumbnail Image.png
Description
The application of microalgal biofilms in wastewater treatment has great advantages such as abolishing the need for energy intensive aerators and recovering nutrients as energy, thus reducing the energy requirement of wastewater treatment several-fold. A 162 cm2 algal biofilm reactor with good wastewater treatment performance and a regular harvesting procedure

The application of microalgal biofilms in wastewater treatment has great advantages such as abolishing the need for energy intensive aerators and recovering nutrients as energy, thus reducing the energy requirement of wastewater treatment several-fold. A 162 cm2 algal biofilm reactor with good wastewater treatment performance and a regular harvesting procedure was studied at lab scale to gain an understanding of effectual parameters such as hydraulic retention time (HRT; 2.6 and 1.3 hrs), liquid level (LL; 0.5 and 1.0 cm), and solids retention time (SRT; 3 and 1.5 wks). A revised synthetic wastewater “Syntho 3.7” was used as a surrogate of domestic primary effluent for nutrient concentration consistency in the feed lines. In the base case (2.6 hr HRT, 0.5 cm LL, and 3 wk SRT), percent removals of 69 ± 2 for total nitrogen (TN), 54 ± 21 for total phosphorous (TP), and 60 ± 7 for chemical oxygen demand (COD) were achieved and 4.0 ± 1.6 g/m2/d dry biomass was produced. A diffusion limitation was encountered when increasing the liquid level, while the potential to further decrease the HRT remains. Nonlinear growth kinetics was observed in comparing SRT variations, and promoting autotrophic growth seems possible. Future work will look towards producing a mathematical model and further testing the aptness of this system for large-scale implementation.
ContributorsHalloum, Ibrahim (Author) / Torres, César I (Thesis advisor) / Popat, Sudeep C (Committee member) / Rittmann, Bruce E. (Committee member) / Arizona State University (Publisher)
Created2016
171635-Thumbnail Image.png
Description
This study investigated the difference in biofilm growth on pristine and aged polypropylene microplastics exposed to Tempe Town Lake water for 8 weeks. The research question here is, does the aging of microplastic (MPs) change the biofilm formation rate and composition of the biofilm in comparison with the pristine MPs.

This study investigated the difference in biofilm growth on pristine and aged polypropylene microplastics exposed to Tempe Town Lake water for 8 weeks. The research question here is, does the aging of microplastic (MPs) change the biofilm formation rate and composition of the biofilm in comparison with the pristine MPs. To answer this question, the biofilm formation was quantified using different methods over time for both pristine polypropylene and aged polypropylene using agar plate counts and crystal violet staining. Colony counts based on agar plating showed an increase in microbial growth over the 8 weeks of treatment, with the aged MPs accumulating higher microbial counts than the pristine MPs. The diversity of the biofilm decreased over time for both MPs and the aged MPs had overall less diversity in biofilm, based on phenotype enumeration, in comparison with the pristine MPs. Higher biofilm growth on aged MPs was confirmed using crystal violet staining, which stains the negatively charged biological compounds such as proteins and the extracellular polymeric substance matrix of the biofilm. Using this complementary approach to colony counting, the same trend of higher biofilm growth on aged MPs was found. Further studies will focus on confirming the phenotype findings using microbiome analysis following DNA extraction. This project created a methodology to quantify biofilm formation on MPs, which was used to show that MPs may accumulate more biofilms in the environment as they age under sunlight.
ContributorsMushro, Noelle (Author) / Perreault, Francois (Thesis advisor) / Hamilton, Kerry (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2022
153982-Thumbnail Image.png
Description
Bioremediation of trichloroethene (TCE) using Dehalococcoides mccartyi-containing microbial cultures is a recognized and successful remediation technology. Our work with an upflow anaerobic sludge blanket (UASB) reactor has shown that high-performance, fast-rate dechlorination of TCE can be achieved by promoting bioflocculation of Dehalococcoides mccartyi-containing cultures. The bioreactor achieved high maximum conversion

Bioremediation of trichloroethene (TCE) using Dehalococcoides mccartyi-containing microbial cultures is a recognized and successful remediation technology. Our work with an upflow anaerobic sludge blanket (UASB) reactor has shown that high-performance, fast-rate dechlorination of TCE can be achieved by promoting bioflocculation of Dehalococcoides mccartyi-containing cultures. The bioreactor achieved high maximum conversion rates of 1.63 ± 0.012 mmol Cl- Lculture-1 h-1 at an HRT of 3.6 hours and >97% dechlorination of TCE to ethene while continuously fed 2 mM TCE. The UASB generated bioflocs from a microbially heterogeneous dechlorinating culture and produced Dehalococcoides mccartyi densities of 1.73x10-13 cells Lculture-1 indicating that bioflocculation of Dehalococcoides mccartyi-containing cultures can lead to high density inocula and high-performance, fast-rate bioaugmentation culture for in situ treatment. The successful operation of our pilot scale bioreactor led to the assessment of the technology as an onsite ex-situ treatment system. The bioreactor was then fed TCE-contaminated groundwater from the Motorola Inc. 52nd Street Plant Superfund site in Phoenix, AZ augmented with the lactate and methanol. The bioreactor maintained >99% dechlorination of TCE to ethene during continuous operation at an HRT of 3.2 hours. Microbial community analysis under both experimental conditions reveals shifts in the community structure although maintaining high rate dechlorination. High density dechlorinating cultures containing bioflocs can provide new ways to 1) produce dense bioaugmentation cultures, 2) perform ex-situ bioremediation of TCE, and 3) increase our understanding of Dehalococcoides mccartyi critical microbial interactions that can be exploited at contaminated sites in order to improve long-term bioremediation schemes.
ContributorsFajardo-Williams, Devyn (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Torres, César I (Committee member) / Popat, Sudeep C (Committee member) / Arizona State University (Publisher)
Created2015
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019
157686-Thumbnail Image.png
Description
Humans are exposed up to thousands of per- and polyfluoroalkyl substances (PFAS) in the environment, but most of the research and action has been directed towards only two PFAS compounds. These two compounds are part of a subcategory of PFAS called perfluoroalkyl acids (PFAAs). It has been a challenge for

Humans are exposed up to thousands of per- and polyfluoroalkyl substances (PFAS) in the environment, but most of the research and action has been directed towards only two PFAS compounds. These two compounds are part of a subcategory of PFAS called perfluoroalkyl acids (PFAAs). It has been a challenge for the environmental community to mitigate risks caused by PFAAs due to their high persistence and lack of effective measures to remove them from the environment, especially in heavily impacted areas like fire-training sites. The goal of this work was to further answer some questions regarding the removal of PFAAs in the environment by looking at anion exchange resin characteristics and presence of a competing compound, natural organic matter (NOM), in the adsorption of environmentally relevant PFAS compounds including the two often monitored 8-carbon chain PFAAs. Two different resins were tested with two forms of counterions, in both groundwater and NOM impacted groundwater. Resin polymer matrix was the most important property in the adsorption of PFAAs, the two resins used A520E and A860 had similar properties except for their matrices polystyrene (PS) and polyacrylic (PA), respectively. The PS base is most effective at PFAAs adsorption, while the PA is most effective at NOM adsorption. The change in the counterion did not negatively affect the adsorption of PFAAs and is, therefore, a viable alternative for future studies that include regeneration and destruction of PFAAs. The presence of NOM also did not significantly affect the adsorption of PFAAs in the PS resin A520E, although for some PFAAs compounds it did affect adsorption for the PA resin. Ultimately, PS macroporous resins with a strong Type I or Type II base work best in PFAAs removal.
Contributorsdel Moral, Lerys Laura (Author) / Boyer, Treavor (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Hamilton, Kerry (Committee member) / Arizona State University (Publisher)
Created2019
158705-Thumbnail Image.png
Description
Water reuse and nutrient recovery are long-standing strategies employed in agricultural systems. This is especially true in dry climates where water is scarce, and soils do not commonly contain the nutrients or organic matter to sustain natural crop growth. Agriculture accounts for approximately 70% of all freshwater withdrawals globally. This

Water reuse and nutrient recovery are long-standing strategies employed in agricultural systems. This is especially true in dry climates where water is scarce, and soils do not commonly contain the nutrients or organic matter to sustain natural crop growth. Agriculture accounts for approximately 70% of all freshwater withdrawals globally. This essential sector of society therefore plays an important role in ensuring water sources are maintained and that the food system can remain resilient to dwindling water resources. The purpose of this research is to quantify the benefits of organic residuals and reclaimed water use in agriculture in arid environments through the development of a systematic review and case study. Data from the systematic review was extracted to be applied to a case study identifying the viability and benefits of organic residuals on arid agriculture. Results show that the organic residuals investigated do have quantitative benefits to agriculture such as improving soil health, reducing the need for conventional fertilizers, and reducing irrigation needs from freshwater sources. Some studies found reclaimed water sources to be of better quality than local freshwater sources due to environmental factors. Biosolids and manure are the most concentrated of the organic residuals, providing nutrient inputs and enhancing long-term soil health. A conceptual model is presented to demonstrate the quantitative benefits of using a reclaimed water source in Pinal County, Arizona on a hypothetical crop of cotton. A goal of the model is to take implied nutrient inputs from reclaimed water sources and quantify them against standard practice of using irrigated groundwater and conventional fertilizers on agricultural operations. Pinal County is an important case study area where farmers are facing cuts to their water resources amid a prolonged drought in the Colorado River Basin. The model shows that a reclaimed water source would be able to offset all freshwater and conventional fertilizer use, but salinity in reclaimed water sources would force a need for additional irrigation in the form of a large leaching fraction. This review combined with the case study demonstrate the potential for nutrient and water reuse, while highlighting potential barriers to address.
ContributorsKrukowski, William Lee (Author) / Muenich, Rebecca (Thesis advisor) / Williams, Clinton (Committee member) / Hamilton, Kerry (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2020
158299-Thumbnail Image.png
Description
Seeking to address sustainability issues associated with food waste (FW), and fat, oil, and grease (FOG) waste disposal, the City of Mesa commissioned the Biodesign Swette Center for Environmental Biotechnology (BSCEB) at Arizona State University (ASU) to study to the impact of implementing FW/FOG co-digestion at the wastewater treatment plant

Seeking to address sustainability issues associated with food waste (FW), and fat, oil, and grease (FOG) waste disposal, the City of Mesa commissioned the Biodesign Swette Center for Environmental Biotechnology (BSCEB) at Arizona State University (ASU) to study to the impact of implementing FW/FOG co-digestion at the wastewater treatment plant (WWTP). A key issue for the study was the “souring” of the anaerobic digesters (ADs), which means that the microorganism responsible for organic degradation were deactivated, causing failure of the AD. Several bench-scale reactors soured after the introduction of the FW/FOG feed streams. By comparing measurements from stable with measurements from the souring reactors, I identified two different circumstances responsible for souring events. One set of reactors soured rapidly after the introduction of FW/FOG due to the digester’s hydraulic retention times (HRT) becoming too short for stable operation. A second set of reactors soured after a long period of stability due to steady accumulation of fatty acids (FAs) that depleted bicarbonate alkalinity. FA accumulation was caused by the incomplete hydrolysis/fermentation of feedstock protein, leading to insufficient release of ammonium (NH4+). In contrast, carbohydrates were more rapidly hydrolyzed and fermented to FAs.

The most important contribution of my research is that I identified several leading indicators of souring. In all cases of souring, the accumulation of soluble chemical oxygen demand (SCOD) was an early and easily quantified indicator. A shift in effluent FA concentrations from shorter to longer species also portended souring. A reduction in the yield of methane (CH4) per mass of volatile suspended solids removed (VSSR) also identified souring conditions, but its variability prevented the methane yield from providing advanced warning to allow intervention. For the rapidly soured reactors, reduced bicarbonate alkalinity was the most useful warning sign, and an increasing ratio of SCOD to bicarbonate alkalinity was the clearest sign of souring. Because I buffered the slow-souring reactors with calcium carbonate (CaCO3), I could not rely on bicarbonate alkalinity as an indicator, which put a premium on SCOD as the early warning. I implemented two buffering regimes and demonstrated that early and consistent buffering could lead to reactor recovery.
ContributorsKupferer III, Rick Anthony (Author) / Rittmann, Bruce E. (Thesis advisor) / Young, Michelle N (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2020
151393-Thumbnail Image.png
Description
DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to

DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to 2,6-DBP and 2,6-DCP exposures were also investigated. DehaloR^2 did not dechlorinate TCC or TCEP. After initial exposure to TCA, half of the initial TCA was dechlorinated to 1,1-dichloroethane (DCA), however half of the TCA remained by day 100. Subsequent TCA and TCE re-exposure showed no reductive dechlorination activity for both TCA and TCE by 120 days after the re-exposure. It has been hypothesized that the microbial TCE-dechlorinating ability was developed before TCE became abundant in groundwater. This dechlorinating ability would have existed in the microbial metabolism due to previous exposure to biogenic halogenated compounds. After observing the inability of DehaloR^2 to dechlorinate other anthropogenic compounds, DehaloR^2 was then exposed to two naturally occurring halogenated phenols, 2,6-DBP and 2,6-DCP, in the presence and absence of TCE. DehaloR^2 debrominated 2,6-DBP through the intermediate 2-bromophenol (2-BP) to the end product phenol faster in the presence of TCE. DehaloR^2 dechlorinated 2,6-DCP to 2-CP in the absence of TCE; however, 2,6-DCP dechlorination was incomplete in the presence of TCE. Additionally, when 2,6-DBP was present, complete TCE dechlorination to ethene occurred more quickly than when TCE was present without 2,6-DBP. However, when 2,6-DCP was present, TCE dechlorination to ethene had not completed by day 55. The increased dehalogenation rate of 2,6-DBP and TCE when present together compared to conditions containing only 2,6-DBP or only TCE suggests a possible synergistic relationship between 2,6-DBP and TCE, while the decreased dechlorination rate of 2,6-DCP and TCE when present together compared to conditions containing only 2,6-DCP or only TCE suggests an inhibitory effect.
ContributorsKegerreis, Kylie (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Halden, Rolf U. (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2012