Matching Items (37)
Filtering by

Clear all filters

152650-Thumbnail Image.png
Description
Hydrocarbon spill site cleanup is challenging when contaminants are present in lower permeability layers. These are difficult to remediate and may result in long-term groundwater impacts. The research goal is to investigate strategies for long-term reduction of contaminant emissions from sources in low permeability layers through partial source treatment at

Hydrocarbon spill site cleanup is challenging when contaminants are present in lower permeability layers. These are difficult to remediate and may result in long-term groundwater impacts. The research goal is to investigate strategies for long-term reduction of contaminant emissions from sources in low permeability layers through partial source treatment at higher/lower permeability interfaces. Conceptually, this provides a clean/reduced concentration zone near the interface, and consequently a reduced concentration gradient and flux from the lower permeability layer. Treatment by in-situ chemical oxidation (ISCO) was evaluated using hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8). H2O2 studies included lab and field-scale distribution studies and lab emission reduction experiments. The reaction rate of H2O2 in soils was so fast it did not travel far (<1 m) from delivery points under typical flow conditions. Oxygen gas generated and partially trapped in soil pores served as a dissolved oxygen (DO) source for >60 days in field and lab studies. During that period, the laboratory studies had reduced hydrocarbon impacts, presumably from aerobic biodegradation, which rebounded once the O2 source depleted. Therefore field monitoring should extend beyond the post-treatment elevated DO. Na2S2O8 use was studied in two-dimensional tanks (122-cm tall, 122-cm wide, and 5-cm thick) containing two contrasting permeability layers (three orders of magnitude difference). The lower permeability layer initially contained a dissolved-sorbed contaminant source throughout this layer, or a 10-cm thick non-aqueous phase liquid (NAPL)-impacted zone below the higher/lower permeability interface. The dissolved-sorbed source tank was actively treated for 14 d. Two hundred days after treatment, the emission reduction of benzene, toluene, ethylbenzene, and p-xylene (BTEX) were 95-99% and methyl tert-butyl ether (MTBE) was 63%. The LNAPL-source tank had three Na2S2O8 and two sodium hydroxide (NaOH) applications for S2O82- base activation. The resulting emission reductions for BTEX, n-propylbenzene, and 1,3,5 trymethylbenzene were 55-73%. While less effective at reducing emissions from LNAPL sources, the 14-d treatment delivered sufficient S2O82- though diffusion to remediate BTEX from the 60 cm dissolved-sorbed source. The overall S2O82- utilization in the dissolved source experiment was calculated by mass balance to be 108-125 g S2O82-/g hydrocarbon treated.
ContributorsCavanagh, Bridget (Author) / Johnson, Paul C (Thesis advisor) / Westerhoff, Paul (Committee member) / Kavazanjian, Edward (Committee member) / Bruce, Cristin (Committee member) / Arizona State University (Publisher)
Created2014
152744-Thumbnail Image.png
Description
Characterization of petroleum spill site source zones directly influences the selection of corrective action plans and frequently affects the success of remediation efforts. For example, simply knowing whether or not nonaqueous phase liquid (NAPL) is present, or if there is chemical storage in less hydraulically accessible regions, will influence corrective

Characterization of petroleum spill site source zones directly influences the selection of corrective action plans and frequently affects the success of remediation efforts. For example, simply knowing whether or not nonaqueous phase liquid (NAPL) is present, or if there is chemical storage in less hydraulically accessible regions, will influence corrective action planning. The overarching objective of this study was to assess if macroscopic source zone features can be inferred from dissolved concentration vs. time data. Laboratory-scale physical model studies were conducted for idealized sources; defined as Type-1) NAPL-impacted high permeability zones, Type-2) NAPL-impacted lower permeability zones, and Type-3) dissolved chemical matrix storage in lower permeability zones. Aquifer source release studies were conducted using two-dimensional stainless steel flow-through tanks outfitted with sampling ports for the monitoring of effluent concentrations and flow rates. An idealized NAPL mixture of key gasoline components was used to create the NAPL source zones, and dissolved sources were created using aqueous solutions having concentrations similar to water in equilibrium with the NAPL sources. The average linear velocity was controlled by pumping to be about 2 ft/d, and dissolved effluent concentrations were monitored daily. The Type-1 experiment resulted in a source signature similar to that expected for a relatively well-mixed NAPL source, with dissolved concentrations dependent on chemical solubility and initial mass fraction. The Type-2 and Type-3 experiments were conducted for 320 d and 190 d respectively. Unlike the Type-1 experiment, the concentration vs. time behavior was similar for all chemicals, for both source types. The magnitudes of the effluent concentrations varied between the Type-2 and Type-3 experiments, and were related to the hydrocarbon source mass. A fourth physical model experiment was performed to identify differences between ideal equilibrium behavior and the source concentration vs. time behavior observed in the tank experiments. Screening-level mathematical models predicted the general behavior observed in the experiments. The results of these studies suggest that dissolved concentration vs. time data can be used to distinguish between Type-1 sources in transmissive zones and Type-2 and Type-3 sources in lower permeability zones, provided that many years to decades of data are available. The results also suggest that concentration vs. time data alone will be insufficient to distinguish between NAPL and dissolved-phase storage sources in lower permeability regions.
ContributorsWilson, Sean Tomas (Author) / Johnson, Paul (Thesis advisor) / Kavazanjian, Edward (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
153308-Thumbnail Image.png
Description
Bacteria of the Legionella genus are a water-borne pathogen of increasing concern due to being responsible for more annual drinking water related disease outbreaks in the United States than all other microbes combined. Unfortunately, the development of public health policies concerning Legionella has impeded by several key factors,

Bacteria of the Legionella genus are a water-borne pathogen of increasing concern due to being responsible for more annual drinking water related disease outbreaks in the United States than all other microbes combined. Unfortunately, the development of public health policies concerning Legionella has impeded by several key factors, including a paucity of data on their interactions and growth requirements in water distribution networks, a poor understanding of potential transmission sources for legionellosis, and limitations in current methodology for the characterization of these pathogens. To address these issues, a variety of research approaches were taken. By measuring Legionella survival in tap water, association in pipe material biofilms, population dynamics in a model distribution system, and occurrence in drinking water distribution system biofilms, key aspects of Legionella ecology in drinking water systems were revealed. Through a series of experiments qualitatively and quantitatively examining the growth of Legionella via nutrients obtained from several water sources, environmental nutritional requirements and capability for growth in the absence of host organisms were demonstrated. An examination of automobile windshield washer fluid as a possible source of legionellosis transmission revealed Legionella survival in certain windshield washer fluids, growth within washer fluid reservoirs, high levels and frequency of contamination in washer fluid reservoirs, and the presence of viable cells in washer fluid spray, suggesting the potential for exposure to Legionella from this novel source. After performing a systematic and quantitative analysis of methodology optimization for the analysis of Legionella cells via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, several strains of this microbe isolated from separated and varied environmental water sampling sites were distinctly typed, demonstrating a potential application of this technology for the characterization of Legionella. The results from this study provide novel insight and methodology relevant to the development of programs for the monitoring and treatment of Legionella in drinking water systems.
ContributorsSchwake, David Otto (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2014
153234-Thumbnail Image.png
Description
Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due

Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due to increased growth, microbiological quality of drinking water is compromised and regrowth in the distribution system occurs. Bacteria attached to carbon particles as biofilms or in conjugation with other bacteria were observed to be highly resistant to post filtration microbial mitigation techniques. Some of these bacteria were identified as pathogenic.

This study focuses on one such pathogen Legionella pneumophila which is resistant to environmental stressors and treatment conditions. It is also responsible for Legionnaires' disease outbreak through drinking water thus attracting attention of regulatory agencies. The work assessed the attachment and colonization of Legionella and heterotrophic bacteria in lab scale GAC media column filters. Quantification of Legionella and HPC in the influent, effluent, column's biofilms and on the GAC particles was performed over time using fluorescent microscopy and culture based techniques.

The results indicated gradual increase in the colonization of the GAC particles with HPC bacteria. Initially high number of Legionella cells were detected in the column effluent and were not detected on GAC suggesting low attachment of the cells to the particles potentially due to lack of any previous biofilms. With the initial colonization of the filter media by other bacteria the number of Legionella cells on the GAC particles and biofilms also increased. Presence of Legionella was confirmed in all the samples collected from the columns spiked with Legionella. Significant increase in the Legionella was observed in column's inner surface biofilm (0.25 logs up to 0.52 logs) and on GAC particles (0.42 logs up to 0.63 logs) after 2 months. Legionella and HPC attached to column's biofilm were higher than that on GAC particles indicating the strong association with biofilms. The bacterial concentration slowly increased in the effluent. This may be due to column's wall effect decreasing filter efficiency, possible exhaustion of GAC capacity over time and potential bacterial growth.
ContributorsSharma, Harsha (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
153298-Thumbnail Image.png
Description
Research in microbial biofuels has dramatically increased over the last decade. The bulk of this research has focused on increasing the production yields of cyanobacteria and algal cells and improving extraction processes. However, there has been little to no research on the potential impact of viruses on the yields of

Research in microbial biofuels has dramatically increased over the last decade. The bulk of this research has focused on increasing the production yields of cyanobacteria and algal cells and improving extraction processes. However, there has been little to no research on the potential impact of viruses on the yields of these phototrophic microbes for biofuel production. Viruses have the potential to significantly reduce microbial populations and limit their growth rates. It is therefore important to understand how viruses affect phototrophic microbes and the prevalence of these viruses in the environment. For this study, phototrophic microbes were grown in glass bioreactors, under continuous light and aeration. Detection and quantification of viruses of both environmental and laboratory microbial strains were measured through the use of a plaque assay. Plates were incubated at 25º C under continuous direct florescent light. Several environmental samples were taken from Tempe Town Lake (Tempe, AZ) and all the samples tested positive for viruses. Virus free phototrophic microbes were obtained from plaque assay plates by using a sterile loop to scoop up a virus free portion of the microbial lawn and transferred into a new bioreactor. Isolated cells were confirmed virus free through subsequent plaque assays. Viruses were detected from the bench scale bioreactors of Cyanobacteria Synechocystis PCC 6803 and the environmental samples. Viruses were consistently present through subsequent passage in fresh cultures; demonstrating viral contamination can be a chronic problem. In addition TEM was performed to examine presence or viral attachment to cyanobacterial cells and to characterize viral particles morphology. Electron micrographs obtained confirmed viral attachment and that the viruses detected were all of a similar size and shape. Particle sizes were measured to be approximately 50-60 nm. Cell reduction was observed as a decrease in optical density, with a transition from a dark green to a yellow green color for the cultures. Phototrophic microbial viruses were demonstrated to persist in the natural environment and to cause a reduction in algal populations in the bioreactors. Therefore it is likely that viruses could have a significant impact on microbial biofuel production by limiting the yields of production ponds.
ContributorsKraft, Kyle (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
153246-Thumbnail Image.png
Description
This study was devised to elucidate key information concerning the potential risk posed by Legionella in reclaimed water. A series of biological experiments and a recharge basin soil column study were conducted to examine the survival, growth, and transport of L. pneumophila through engineered reclaimed water systems. A pilot-scale, column

This study was devised to elucidate key information concerning the potential risk posed by Legionella in reclaimed water. A series of biological experiments and a recharge basin soil column study were conducted to examine the survival, growth, and transport of L. pneumophila through engineered reclaimed water systems. A pilot-scale, column study was set up to measure Legionella transport in the columns under Arizona recharge basin conditions. Two columns, A and B, were packed to a depth of 122 cm with a loamy sand media collected from a recharge basin in Mesa, Arizona. The grain size distribution of Column A differed from that of Column B by the removal of fines passing the #200 sieve. The different soil profiles represented by column A and B allowed for further investigation of soil attributes which influence the microbial transport mechanism. Both clear PVC columns stand at a height of 1.83 m with an inner diameter of 6.35 cm. Sampling ports were drilled into the column at the soil depths 15, 30, 60, 92, 122 cm. Both columns were acclimated with tertiary treated waste water and set to a flow rate of approximately 1.5 m/d. The columns were used to assess the transport of a bacterial indicator, E. coli, in addition to assessing the study's primary pathogen of concern, Legionella. Approximately, 〖10〗^7 to 〖10〗^9 E. coli cells or 〖10〗^6 to 〖10〗^7Legionella cells were spiked into the columns' head waters for each experiment. Periodically, samples were collected from each column's sampling ports, until a minimum of three pore volume passed through the columns.

The pilot-scale, column study produced novel results which demonstrated the mechanism for Legionella to be transported through recharge basin soil. E. coli was transported, through 122 cm of the media in under 6 hours, whereas, Legionella was transported, through the same distance, in under 30 hours. Legionella has been shown to survive in low nutrient conditions for over a year. Given the novel results of this proof of concept study, a claim can be made for the transport of Legionella into groundwater aquifers through engineering recharge basin conditions, in Central Arizona.
ContributorsMcBurnett, Lauren Rae (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
150169-Thumbnail Image.png
Description
A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows

A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows for explicit calculation of forces and strains in the geosynthetic elements. Based upon comparison of numerical results to experimental data, an elastic-perfectly plastic interface model is demonstrated to adequately reproduce the cyclic behavior of typical geomembrane-geotextile and geomembrane-geomembrane interfaces provided the appropriate interface properties are used. New constitutive models are developed for the in-plane cyclic shear behavior of textured geomembrane/geosynthetic clay liner (GMX/GCL) interfaces and GCLs. The GMX/GCL model is an empirical model and the GCL model is a kinematic hardening, isotropic softening multi yield surface plasticity model. Both new models allows for degradation in the cyclic shear resistance from a peak to a large displacement shear strength. The ability of the finite difference model to predict forces and strains in a geosynthetic element modeled as a beam element with zero moment of inertia sandwiched between two interface elements is demonstrated using hypothetical models of a heap leach pad and two typical landfill configurations. The numerical model is then used to conduct back analyses of the performance of two lined municipal solid waste (MSW) landfills subjected to strong ground motions in the Northridge earthquake. The modulus reduction "backbone curve" employed with the Masing criterion and 2% Rayleigh damping to model the cyclic behavior of MSW was established by back-analysis of the response of the Operating Industries Inc. landfill to five different earthquakes, three small magnitude nearby events and two larger magnitude distant events. The numerical back analysis was able to predict the tears observed in the Chiquita Canyon Landfill liner system after the earthquake if strain concentrations due to seams and scratches in the geomembrane are taken into account. The apparent good performance of the Lopez Canyon landfill geomembrane and the observed tension in the overlying geotextile after the Northridge event was also successfully predicted using the numerical model.
ContributorsArab, Mohamed G (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
149822-Thumbnail Image.png
Description
It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive

It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive dust control. Most of these polymer stabilizers are expensive synthetic polymer products. Their adverse effects and expense usually limits their use. Biopolymers provide a potential alternative to synthetic polymers. They can provide dust abatement by encapsulating soil particles and creating a binding network throughout the treated area. This research into the effectiveness of biopolymers for fugitive dust control involved three phases. Phase I included proof of concept tests. Phase II included carrying out the tests in a wind tunnel. Phase III consisted of conducting the experiments in the field. Proof of concept tests showed that biopolymers have the potential to reduce soil erosion and fugitive dust transport. Wind tunnel tests on two candidate biopolymers, xanthan and chitosan, showed that there is a proportional relationship between biopolymer application rates and threshold wind velocities. The wind tunnel tests also showed that xanthan gum is more successful in the field than chitosan. The field tests showed that xanthan gum was effective at controlling soil erosion. However, the chitosan field data was inconsistent with the xanthan data and field data on bare soil.
ContributorsAlsanad, Abdullah (Author) / Kavazanjian, Edward (Thesis advisor) / Edwards, David (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2011
150784-Thumbnail Image.png
Description
In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor

In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor source was a liquid composed of twelve petroleum hydrocarbons common in weathered gasoline. It was placed in a chamber at the bottom of each column and the vapors diffused upward through the soil to the top where they were swept away with humidified gas. The experiment was conducted in three phases: i) nitrogen sweep gas; ii) air sweep gas; iii) vapor source concentrations decreased by ten times from the original concentrations and under air sweep gas. Oxygen, carbon dioxide and hydrocarbon concentrations were monitored over time. The data allowed determination of times to reach steady conditions, effluent mass emissions and concentration profiles. Times to reach near-steady conditions were consistent with theory and chemical-specific properties. First-order degradation rates were highest for straight-chain alkanes and aromatic hydrocarbons. Normalized effluent mass emissions were lower for lower source concentration and aerobic conditions. At the end of the study, soil core samples were taken every 6 in. Soil moisture content analyses showed that water had redistributed in the soil during the experiment. The soil at the bottom of the columns generally had higher moisture contents than initial values, and soil at the top had lower moisture contents. Profiles of the number of colony forming units of hydrocarbon-utilizing bacteria/g-soil indicated that the highest concentrations of degraders were located at the vertical intervals where maximum degradation activity was suggested by CO2 profiles. Finally, the near-steady conditions of each phase of the study were simulated using a three-dimensional transient numerical model. The model was fit to the Phase I data by adjusting soil properties, and then fit to Phase III data to obtain compound-specific first-order biodegradation rate constants ranging from 0.0 to 5.7x103 d-1.
ContributorsEscobar Melendez, Elsy (Author) / Johnson, Paul C. (Thesis advisor) / Andino, Jean (Committee member) / Forzani, Erica (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2012
150993-Thumbnail Image.png
Description
Nanotechnology is a scientific field that has recently expanded due to its applications in pharmaceutical and personal care products, industry and agriculture. As result of this unprecedented growth, nanoparticles (NPs) have become a significant environmental contaminant, with potential to impact various forms of life in environment. Metal nanoparticles (mNPs) exhibit

Nanotechnology is a scientific field that has recently expanded due to its applications in pharmaceutical and personal care products, industry and agriculture. As result of this unprecedented growth, nanoparticles (NPs) have become a significant environmental contaminant, with potential to impact various forms of life in environment. Metal nanoparticles (mNPs) exhibit unique properties such as increased chemical reactivity due to high specific surface area to volume ratios. Bacteria play a major role in many natural and engineered biogeochemical reactions in wastewater treatment plants and other environmental compartments. I have evaluated the laboratory isolates of E. coli, Bacillus, Alcaligenes, Pseudomonas; wastewater isolates of E. coli and Bacillus; and pathogenic isolate of E. coli for their response to 50 & 100 nm sized Cu nanoparticles (CuNPs). Bactericidal tests, scanning electron microscopy (SEM) analyses, and probable toxicity pathways assays were performed. The results indicate that under continuous mixing conditions, CuNPs are effective in inactivation of the selected bacterial isolates. In general, exposure to CuNPs resulted in 4 to >6 log reduction in bacterial population within 2 hours. Based on the GR, LDH and MTT assays, bacterial cells showed different toxicity elicitation pathways after exposure to CuNPs. Therefore, it can be concluded that the laboratory isolates are good candidates for predicting the behavior of environmental isolates exposed to CuNPs. Also, high inactivation values recorded in this study suggest that the presence of CuNPs in different environmental compartments may have an impact on pollutants attenuation and wastewater biological treatment processes. These results point towards the need for an in depth investigation of the impact of NPs on the biological processes; and long-term effect of high load of NPs on the stability of aquatic and terrestrial ecologies.
ContributorsAlboloushi, Ali (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Olson, Larry (Committee member) / Arizona State University (Publisher)
Created2012