Matching Items (26)
Filtering by

Clear all filters

149681-Thumbnail Image.png
Description
The trend towards using recycled materials on new construction projects is growing as the cost for construction materials are ever increasing and the awareness of the responsibility we have to be good stewards of our environment is heightened. While recycled asphalt is sometimes used in pavements, its use as structural

The trend towards using recycled materials on new construction projects is growing as the cost for construction materials are ever increasing and the awareness of the responsibility we have to be good stewards of our environment is heightened. While recycled asphalt is sometimes used in pavements, its use as structural fill has been hindered by concern that it is susceptible to large long-term deformations (creep), preventing its use for a great many geotechnical applications. While asphalt/soil blends are often proposed as an alternative to 100% recycled asphalt fill, little data is available characterizing the geotechnical properties of recycled asphalt soil blends. In this dissertation, the geotechnical properties for five different recycled asphalt soil blends are characterized. Data includes the particle size distribution, plasticity index, creep, and shear strength for each blend. Blends with 0%, 25%, 50%, 75% and 100% recycled asphalt were tested. As the recycled asphalt material used for testing had particles sizes up to 1.5 inches, a large 18 inch diameter direct shear apparatus was used to determine the shear strength and creep characteristics of the material. The results of the testing program confirm that the creep potential of recycled asphalt is a geotechnical concern when the material is subjected to loads greater than 1500 pounds per square foot (psf). In addition, the test results demonstrate that the amount of soil blended with the recycled asphalt can greatly influence the creep and shear strength behavior of the composite material. Furthermore, there appears to be an optimal blend ratio where the composite material had better properties than either the recycled asphalt or virgin soil alone with respect to shear strength.
ContributorsSchaper, Jeffery M (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra L. (Committee member) / Zapata, Claudia E (Committee member) / Arizona State University (Publisher)
Created2011
149822-Thumbnail Image.png
Description
It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive

It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive dust control. Most of these polymer stabilizers are expensive synthetic polymer products. Their adverse effects and expense usually limits their use. Biopolymers provide a potential alternative to synthetic polymers. They can provide dust abatement by encapsulating soil particles and creating a binding network throughout the treated area. This research into the effectiveness of biopolymers for fugitive dust control involved three phases. Phase I included proof of concept tests. Phase II included carrying out the tests in a wind tunnel. Phase III consisted of conducting the experiments in the field. Proof of concept tests showed that biopolymers have the potential to reduce soil erosion and fugitive dust transport. Wind tunnel tests on two candidate biopolymers, xanthan and chitosan, showed that there is a proportional relationship between biopolymer application rates and threshold wind velocities. The wind tunnel tests also showed that xanthan gum is more successful in the field than chitosan. The field tests showed that xanthan gum was effective at controlling soil erosion. However, the chitosan field data was inconsistent with the xanthan data and field data on bare soil.
ContributorsAlsanad, Abdullah (Author) / Kavazanjian, Edward (Thesis advisor) / Edwards, David (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2011
150127-Thumbnail Image.png
Description
This dissertation describes development of a procedure for obtaining high quality, optical grade sand coupons from frozen sand specimens of Ottawa 20/30 sand for image processing and analysis to quantify soil structure along with a methodology for quantifying the microstructure from the images. A technique for thawing and stabilizing

This dissertation describes development of a procedure for obtaining high quality, optical grade sand coupons from frozen sand specimens of Ottawa 20/30 sand for image processing and analysis to quantify soil structure along with a methodology for quantifying the microstructure from the images. A technique for thawing and stabilizing frozen core samples was developed using optical grade Buehler® Epo-Tek® epoxy resin, a modified triaxial cell, a vacuum/reservoir chamber, a desiccator, and a moisture gauge. The uniform epoxy resin impregnation required proper drying of the soil specimen, application of appropriate confining pressure and vacuum levels, and epoxy mixing, de-airing and curing. The resulting stabilized sand specimen was sectioned into 10 mm thick coupons that were planed, ground, and polished with progressively finer diamond abrasive grit levels using the modified Allied HTP Inc. polishing method so that the soil structure could be accurately quantified using images obtained with the use of an optical microscopy technique. Illumination via Bright Field Microscopy was used to capture the images for subsequent image processing and sand microstructure analysis. The quality of resulting images and the validity of the subsequent image morphology analysis hinged largely on employment of a polishing and grinding technique that resulted in a flat, scratch free, reflective coupon surface characterized by minimal microstructure relief and good contrast between the sand particles and the surrounding epoxy resin. Subsequent image processing involved conversion of the color images first to gray scale images and then to binary images with the use of contrast and image adjustments, removal of noise and image artifacts, image filtering, and image segmentation. Mathematical morphology algorithms were used on the resulting binary images to further enhance image quality. The binary images were then used to calculate soil structure parameters that included particle roundness and sphericity, particle orientation variability represented by rose diagrams, statistics on the local void ratio variability as a function of the sample size, and the local void ratio distribution histograms using Oda's method and Voronoi tessellation method, including the skewness, kurtosis, and entropy of a gamma cumulative probability distribution fit to the local void ratio distribution.
ContributorsCzupak, Zbigniew David (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
152058-Thumbnail Image.png
Description
There is growing concern over the future availability of water for electricity generation. Because of a rapidly growing population coupled with an arid climate, the Western United States faces a particularly acute water/energy challenge, as installation of new electricity capacity is expected to be required in the areas with the

There is growing concern over the future availability of water for electricity generation. Because of a rapidly growing population coupled with an arid climate, the Western United States faces a particularly acute water/energy challenge, as installation of new electricity capacity is expected to be required in the areas with the most limited water availability. Electricity trading is anticipated to be an important strategy for avoiding further local water stress, especially during drought and in the areas with the most rapidly growing populations. Transfers of electricity imply transfers of "virtual water" - water required for the production of a product. Yet, as a result of sizable demand growth, there may not be excess capacity in the system to support trade as an adaptive response to long lasting drought. As the grid inevitably expands capacity due to higher demand, or adapts to anticipated climate change, capacity additions should be selected and sited to increase system resilience to drought. This paper explores the tradeoff between virtual water and local water/energy infrastructure development for the purpose of enhancing the Western US power grid's resilience to drought. A simple linear model is developed that estimates the economically optimal configuration of the Western US power grid given water constraints. The model indicates that natural gas combined cycle power plants combined with increased interstate trade in power and virtual water provide the greatest opportunity for cost effective and water efficient grid expansion. Such expansion, as well as drought conditions, may shift and increase virtual water trade patterns, as states with ample water resources and a competitive advantage in developing power sources become net exporters, and states with limited water or higher costs become importers.
ContributorsHerron, Seth (Author) / Ruddell, Benjamin L (Thesis advisor) / Ariaratnam, Samuel (Thesis advisor) / Allenby, Braden (Committee member) / Williams, Eric (Committee member) / Arizona State University (Publisher)
Created2013
150784-Thumbnail Image.png
Description
In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor

In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor source was a liquid composed of twelve petroleum hydrocarbons common in weathered gasoline. It was placed in a chamber at the bottom of each column and the vapors diffused upward through the soil to the top where they were swept away with humidified gas. The experiment was conducted in three phases: i) nitrogen sweep gas; ii) air sweep gas; iii) vapor source concentrations decreased by ten times from the original concentrations and under air sweep gas. Oxygen, carbon dioxide and hydrocarbon concentrations were monitored over time. The data allowed determination of times to reach steady conditions, effluent mass emissions and concentration profiles. Times to reach near-steady conditions were consistent with theory and chemical-specific properties. First-order degradation rates were highest for straight-chain alkanes and aromatic hydrocarbons. Normalized effluent mass emissions were lower for lower source concentration and aerobic conditions. At the end of the study, soil core samples were taken every 6 in. Soil moisture content analyses showed that water had redistributed in the soil during the experiment. The soil at the bottom of the columns generally had higher moisture contents than initial values, and soil at the top had lower moisture contents. Profiles of the number of colony forming units of hydrocarbon-utilizing bacteria/g-soil indicated that the highest concentrations of degraders were located at the vertical intervals where maximum degradation activity was suggested by CO2 profiles. Finally, the near-steady conditions of each phase of the study were simulated using a three-dimensional transient numerical model. The model was fit to the Phase I data by adjusting soil properties, and then fit to Phase III data to obtain compound-specific first-order biodegradation rate constants ranging from 0.0 to 5.7x103 d-1.
ContributorsEscobar Melendez, Elsy (Author) / Johnson, Paul C. (Thesis advisor) / Andino, Jean (Committee member) / Forzani, Erica (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2012
151227-Thumbnail Image.png
Description
Volatile Organic Compounds (VOCs) are central to atmospheric chemistry and have significant impacts on the environment. The reaction of oxygenated VOCs with OH radicals was first studied to understand the fate of oxygenated VOCs. The rate constants of the gas-phase reaction of OH radicals with trans-2-hexenal, trans-2-octenal, and trans-2 nonenal

Volatile Organic Compounds (VOCs) are central to atmospheric chemistry and have significant impacts on the environment. The reaction of oxygenated VOCs with OH radicals was first studied to understand the fate of oxygenated VOCs. The rate constants of the gas-phase reaction of OH radicals with trans-2-hexenal, trans-2-octenal, and trans-2 nonenal were determined using the relative rate technique. Then the interactions between VOCs and ionic liquid surfaces were studied. The goal was to find a material to selectively detect alcohol compounds. Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of VOCs. The thermodynamic data suggest that 1-butyl-3-methylimindazolium chloride (C4mimCl) preferentially interacts with alcohols as compared to other classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C4mimCl to various alcohols and a VOC mixture with an alcohol in it. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C4mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds. The experimental results demonstrated that C4mimCl is selective to alcohols, even in complex mixtures. The kinetic study of the association and dissociation of alcohols with C4minCl surfaces was performed. The findings in this work provide information for future gas-phase alcohol sensor design. CO2 is a major contributor to global warming. An ionic liquid functionalized reduced graphite oxide (IL-RGO)/ TiO2 nanocomposite was synthesized and used to reduce CO2 to a hydrocarbon in the presence of H2O vapor. The SEM image revealed that IL-RGO/TiO2 contained separated reduced graphite oxide flakes with TiO2 nanoparticles. Diffuse Reflectance Infrared Fourier Transform Spectroscopy was used to study the conversion of CO2 and H2O vapor over the IL-RGO/TiO2 catalyst. Under UV-Vis irradiation, CH4 was found to form after just 40 seconds of irradiation. The concentration of CH4 continuously increased under longer irradiation time. This research is particularly important since it seems to suggest the direct, selective formation of CH4 as opposed to CO.
ContributorsGao, Tingting (Author) / Andino, Jean M (Thesis advisor) / Forzani, Erica (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2012
Description
Carbon capture and sequestration (CCS) is one of the important mitigation options for climate change. Numerous technologies to capture carbon dioxide (CO2) are in development but currently, capture using amines is the predominant technology. When the flue gas reacts with amines (Monoethanaloamine) the CO2 is absorbed into the solution and

Carbon capture and sequestration (CCS) is one of the important mitigation options for climate change. Numerous technologies to capture carbon dioxide (CO2) are in development but currently, capture using amines is the predominant technology. When the flue gas reacts with amines (Monoethanaloamine) the CO2 is absorbed into the solution and forms an intermediate product which then releases CO2 at higher temperature. The high temperature necessary to strip CO2 is provided by steam extracted from the powerplant thus reducing the net output of the powerplant by 25% to 35%. The reduction in electricity output for the same input of coal increases the emissions factor of Nitrogen Oxides, Mercury, Particulate matter, Ammonia, Volatile organic compounds for the same unit of electricity produced. The thesis questions if this tradeoff between CO2 and other emissions is beneficial or not. Three different methodologies, Life Cycle Assessment, Valuation models and cost benefit analysis are used to identify if there is a net benefit to the society on implementation of CCS to a Pulverized coal powerplant. These methodologies include the benefits due to reduction of CO2 and the disbenefits due to the increase of other emissions. The life cycle assessment using ecoindicator'99 methodology shows the CCS is not beneficial under Hierarchical and Egalitarian perspective. The valuation model shows that the inclusion of the other emissions reduces the benefit associated with CCS. For a lower CO2 price the valuation model shows that CCS is detrimental to the environment. The cost benefit analysis shows that a CO2 price of at least $80/tCO2 is required for the cost benefit ratio to be 1. The methodology integrates Montecarlo simulation to characterize the uncertainties associated with the valuation models.
ContributorsSekar, Ashok (Author) / Williams, Eric (Thesis advisor) / Chester, Mikhail (Thesis advisor) / Allenby, Braden (Committee member) / Arizona State University (Publisher)
Created2012
137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
133109-Thumbnail Image.png
Description
Expansive soils in the United States cause extensive damage to roadways, buildings, and various structures. There are several treatment or methods of mitigation for these expansive soils. These treatments can be physical or chemical treatments that serve to provide more suitable building qualities for foundations and roadways alike. The main

Expansive soils in the United States cause extensive damage to roadways, buildings, and various structures. There are several treatment or methods of mitigation for these expansive soils. These treatments can be physical or chemical treatments that serve to provide more suitable building qualities for foundations and roadways alike. The main issue with expansive soils, is the volumetric variations, which are known as swelling and consolidation. These behaviors of the soil are usually stabilized through the use of lime solution, Portland Cement Concrete, and a newer technology in chemical treatments, sodium silicate solutions. Although the various chemical treatments show benefits in certain areas, the most beneficial method for stabilization comes from the combination of the chemical treatments. Lime and Portland cement concrete are the most effective in terms of increasing compressive strength and reduction of swell potential. However, with the introduction of silicate into either treatment, the efficacy of the treatments increases by a large amount lending itself more as an additive for the former processes. Sodium silicate solution does not lend itself to effectively increase the compressive strength of expansive soils. The sodium silicate solution treatment needs extensive research and development to further improve the process. A proposed experiment plan has been recommended to develop trends of pH and temperature and its influence on the effectiveness of the treatment. Nonetheless, due to the high energy consumption of the other processes, sodium silicate solution may be a proper step in decreases the carbon footprint, that is currently being created by the synthesis of Portland Cement Concrete and lime.
ContributorsMeza, Magdaleno (Author) / Zapata, Claudia (Thesis director) / Kavazanjian, Edward (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134138-Thumbnail Image.png
Description
This thesis was prepared by Tyler Maynard and Hayley Monroe, who are students at Arizona State University studying to complete their B.S.E.s in Civil Engineering and Construction Engineering, respectively. Both students are members of Barrett, the Honors College, at Arizona State University, and have prepared the following document for the

This thesis was prepared by Tyler Maynard and Hayley Monroe, who are students at Arizona State University studying to complete their B.S.E.s in Civil Engineering and Construction Engineering, respectively. Both students are members of Barrett, the Honors College, at Arizona State University, and have prepared the following document for the purpose of completing their undergraduate honors thesis. The early sections of this document comprise a general, introductory overview of earthquakes and liquefaction as a phenomenon resulting from earthquakes. In the latter sections, this document analyzes the relationship between the furthest hypocentral distance to observed liquefaction and the earthquake magnitude published in 2006 by Wang, Wong, Dreger, and Manga. This research was conducted to gain a greater understanding of the factors influencing liquefaction and to compare the existing relationship between the maximum distance for liquefaction and earthquake magnitude to updated earthquake data compiled for the purpose of this report. As part of this research, 38 different earthquake events from the Geotechnical Extreme Events Reconnaissance (GEER) Association with liquefaction data were examined. Information regarding earthquake depth, distance to the furthest liquefaction event (epicentral and hypocentral), and earthquake magnitude (Mw) from recent earthquake events (1989 to 2016) was compared to the previously established relationship of liquefaction occurrence distance to moment magnitude. The purpose of this comparison was to determine if recent events still comply with the established relationship. From this comparison, it was determined that the established relationship still generally holds true for the large magnitude earthquakes (magnitude 7.5 or above) that were considered herein (with only 2.6% falling above the furthest expected liquefaction distance). However, this relationship may be too conservative for recent, low magnitude earthquake events; those events examined below magnitude 6.3 did not approach established range of furthest expected liquefaction distance. The overestimation of furthest hypocentral distance to liquefaction at low magnitudes suggest the empirical relationship may need to be adjusted to more accurately capture recent events, as reported by GEER.
ContributorsMonroe, Hayley (Co-author) / Maynard, Tyler (Co-author) / Kavazanjian, Edward (Thesis director) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Construction Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12