Matching Items (357)
Filtering by

Clear all filters

151881-Thumbnail Image.png
Description
In the 1930s, with the rise of Nazism, many artists in Europe had to flee their homelands and sought refuge in the United States. Austrian composer Hanns Eisler who had risen to prominence as a significant composer during the Weimar era was among them. A Jew, an ardent Marxist and

In the 1930s, with the rise of Nazism, many artists in Europe had to flee their homelands and sought refuge in the United States. Austrian composer Hanns Eisler who had risen to prominence as a significant composer during the Weimar era was among them. A Jew, an ardent Marxist and composer devoted to musical modernism, he had established himself as a writer of film music and Kampflieder, fighting songs, for the European workers' movement. After two visits of the United States in the mid-1930s, Eisler settled in America where he spent a decade (1938-1948), composed a considerable number of musical works, including important film scores, instrumental music and songs, and, in collaboration with Theodor W. Adorno, penned the influential treatise Composing for the Films. Yet despite his substantial contributions to American culture American scholarship on Eisler has remained sparse, perhaps due to his reputation as the "Karl Marx in Music." In this study I examine Eisler's American exile and argue that Eisler, through his roles as a musician and a teacher, actively sought to enrich American culture. I will present background for his exile years, a detailed overview of his American career as well as analyses and close readings of several of his American works, including three of his American film scores, Pete Roleum and His Cousins (1939), Hangmen Also Die (1943), and None But the Lonely Heart (1944), and the String Quartet (1940), Third Piano Sonata (1943), Woodbury Liederbüchlein (1941), and Hollywood Songbook (1942-7). This thesis builds upon unpublished correspondence and documents available only in special collections at the University of Southern California (USC), as well as film scores in archives at USC and the University of California, Los Angeles. It also draws on Eisler studies by such European scholars as Albrecht Betz, Jürgen Schebera, and Horst Weber, as well as on research of film music scholars Sally Bick and Claudia Gorbman. As there is little written on the particulars of Eisler's American years, this thesis presents new facts and new perspectives and aims at a better understanding of the artistic achievements of this composer.
ContributorsBoyd, Caleb (Author) / Feisst, Sabine (Thesis advisor) / Levy, Benjamin (Committee member) / Oldani, Robert (Committee member) / Arizona State University (Publisher)
Created2013
151889-Thumbnail Image.png
Description
This dissertation explores the use of bench-scale batch microcosms in remedial design of contaminated aquifers, presents an alternative methodology for conducting such treatability studies, and - from technical, economical, and social perspectives - examines real-world application of this new technology. In situ bioremediation (ISB) is an effective remedial approach for

This dissertation explores the use of bench-scale batch microcosms in remedial design of contaminated aquifers, presents an alternative methodology for conducting such treatability studies, and - from technical, economical, and social perspectives - examines real-world application of this new technology. In situ bioremediation (ISB) is an effective remedial approach for many contaminated groundwater sites. However, site-specific variability necessitates the performance of small-scale treatability studies prior to full-scale implementation. The most common methodology is the batch microcosm, whose potential limitations and suitable technical alternatives are explored in this thesis. In a critical literature review, I discuss how continuous-flow conditions stimulate microbial attachment and biofilm formation, and identify unique microbiological phenomena largely absent in batch bottles, yet potentially relevant to contaminant fate. Following up on this theoretical evaluation, I experimentally produce pyrosequencing data and perform beta diversity analysis to demonstrate that batch and continuous-flow (column) microcosms foster distinctly different microbial communities. Next, I introduce the In Situ Microcosm Array (ISMA), which took approximately two years to design, develop, build and iteratively improve. The ISMA can be deployed down-hole in groundwater monitoring wells of contaminated aquifers for the purpose of autonomously conducting multiple parallel continuous-flow treatability experiments. The ISMA stores all sample generated in the course of each experiment, thereby preventing the release of chemicals into the environment. Detailed results are presented from an ISMA demonstration evaluating ISB for the treatment of hexavalent chromium and trichloroethene. In a technical and economical comparison to batch microcosms, I demonstrate the ISMA is both effective in informing remedial design decisions and cost-competitive. Finally, I report on a participatory technology assessment (pTA) workshop attended by diverse stakeholders of the Phoenix 52nd Street Superfund Site evaluating the ISMA's ability for addressing a real-world problem. In addition to receiving valuable feedback on perceived ISMA limitations, I conclude from the workshop that pTA can facilitate mutual learning even among entrenched stakeholders. In summary, my doctoral research (i) pinpointed limitations of current remedial design approaches, (ii) produced a novel alternative approach, and (iii) demonstrated the technical, economical and social value of this novel remedial design tool, i.e., the In Situ Microcosm Array technology.
ContributorsKalinowski, Tomasz (Author) / Halden, Rolf U. (Thesis advisor) / Johnson, Paul C (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Bennett, Ira (Committee member) / Arizona State University (Publisher)
Created2013
152199-Thumbnail Image.png
Description
Baseball is the quintessential American game. To understand the country one must also understand the role baseball played in the nation's maturation process. Embedded in baseball's history are (among other things) the stories of America's struggles with issues of race, gender, immigration, organized labor, drug abuse, and rampant consumerism. Over

Baseball is the quintessential American game. To understand the country one must also understand the role baseball played in the nation's maturation process. Embedded in baseball's history are (among other things) the stories of America's struggles with issues of race, gender, immigration, organized labor, drug abuse, and rampant consumerism. Over the better part of two centuries, the national pastime both reflected changes to American culture and helped shape them as well. Documenting these changes and packaging them for consumption is the responsibility of the National Baseball Hall of Fame and Museum in Cooperstown, New York. Founded as a tourist attraction promoting largely patriotic values, in recent decades the Baseball Hall of Fame made a concerted effort to transform itself into a respected member of the history museum community--dedicated to displaying American history through the lens of baseball. This dissertation explores the evolution of the Baseball Hall of Fame from celebratory shrine to history museum through an analysis of public history practice within the museum. In particular, this study examines the ways the Hall both reflected and reinforced changes to American values and ideologies through the evolution of public history practice in the museum. The primary focus of this study is the museum's exhibits and analyzing what their content and presentation convey about the social climate during the various stages of the Baseball Hall of Fame's evolution. The principal resources utilized to identify these stages include promotional materials, exhibit reviews, periodicals, and photographic records, as well as interviews with past and present Hall-of-Fame staff. What this research uncovers is the story of an institution in the midst of a slow transition. Throughout the past half century, the Hall of Fame staff struggled with a variety of obstacles to change (including the museum's traditionally conservative roots, the unquestioning devotion Americans display for baseball and its mythology, and the Hall of Fame's idyllic setting in a quaint corner of small-town America) that undermined their efforts to become the type of socially relevant institution many envisioned. Contending with these challenges continues to characterize much of the museum's operations today.
ContributorsMangan, Gregory (Author) / Warren-Findley, Jannelle (Thesis advisor) / Szuter, Christine (Committee member) / Toon, Richard (Committee member) / Arizona State University (Publisher)
Created2013
152207-Thumbnail Image.png
Description
Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis,

Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis, where CO2 benefits occurring during use of the PV panels is found to exceed emissions generated during the PV manufacturing phase including materials extraction and manufacture of the PV panels prior to installation. However, this approach neglects to recognize that the environmental costs of CO2 release during manufacture are incurred early, while environmental benefits accrue later. Thus, where specific policy targets suggest meeting CO2 reduction targets established by a certain date, rapid PV deployment may have counter-intuitive, albeit temporary, undesired consequences. Thus, on a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood. This phenomenon is particularly acute when PV manufacture occurs in areas using CO2 intensive energy sources (e.g., coal), but deployment occurs in areas with less CO2 intensive electricity sources (e.g., hydro). This thesis builds a dynamic Cumulative Radiative Forcing (CRF) model to examine the inter-temporal warming impacts of PV deployments in three locations: California, Wyoming and Arizona. The model includes the following factors that impact CRF: PV deployment rate, choice of PV technology, pace of PV technology improvements, and CO2 intensity in the electricity mix at manufacturing and deployment locations. Wyoming and California show the highest and lowest CRF benefits as they have the most and least CO2 intensive grids, respectively. CRF payback times are longer than CO2 payback times in all cases. Thin film, CdTe PV technologies have the lowest manufacturing CO2 emissions and therefore the shortest CRF payback times. This model can inform policies intended to fulfill time-sensitive CO2 mitigation goals while minimizing short term radiative forcing.
ContributorsTriplican Ravikumar, Dwarakanath (Author) / Seager, Thomas P (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Chester, Mikhail V (Committee member) / Sinha, Parikhit (Committee member) / Arizona State University (Publisher)
Created2013
152156-Thumbnail Image.png
Description
Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments

Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments in cell degeneration research with the four major chapters, I trace the emergence of the degenerating cell as a scientific object, describe the generations of a variety of concepts, interpretations and usages associated with cell death and aging, and analyze the transforming influences of the rising cell degeneration research. Particularly, the four chapters show how the changing scientific practices about cellular life in embryology, cell culture, aging research, and molecular biology of Caenorhabditis elegans shaped the interpretations about cell degeneration in the twentieth-century as life-shaping, limit-setting, complex, yet regulated. These events created and consolidated important concepts in life sciences such as programmed cell death, the Hayflick limit, apoptosis, and death genes. These cases also transformed the material and epistemic practices about the end of cellular life subsequently and led to the formations of new research communities. The four cases together show the ways cell degeneration became a shared subject between molecular cell biology, developmental biology, gerontology, oncology, and pathology of degenerative diseases. These practices and perspectives created a special kind of interconnectivity between different fields and led to a level of interdisciplinarity within cell degeneration research by the early 1990s.
ContributorsJiang, Lijing (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Thesis advisor) / Hurlbut, James (Committee member) / Creath, Richard (Committee member) / White, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152255-Thumbnail Image.png
Description
Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The objective of the present study was to extrapolate this concept,

Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The objective of the present study was to extrapolate this concept, termed 'sewage epidemiology', to include municipal sewage sludge (MSS) in identifying and prioritizing contaminants of emerging concern (CECs). To test this the following specific aims were defined: i) to screen and identify CECs in nationally representative samples of MSS and to provide nationwide inventories of CECs in U.S. MSS; ii) to investigate the fate and persistence in MSS-amended soils, of sludge-borne hydrophobic CECs; and iii) to develop an analytical tool relying on contaminant levels in MSS as an indicator for identifying and prioritizing hydrophobic CECs. Chemicals that are primarily discharged to the sewage systems (alkylphenol surfactants) and widespread persistent organohalogen pollutants (perfluorochemicals and brominated flame retardants) were analyzed in nationally representative MSS samples. A meta-analysis showed that CECs contribute about 0.04-0.15% to the total dry mass of MSS, a mass equivalent of 2,700-7,900 metric tonnes of chemicals annually. An analysis of archived mesocoms from a sludge weathering study showed that 64 CECs persisted in MSS/soil mixtures over the course of the experiment, with half-lives ranging between 224 and >990 days; these results suggest an inherent persistence of CECs that accumulate in MSS. A comparison of the spectrum of chemicals (n=52) analyzed in nationally representative biological specimens from humans and MSS revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that MSS may serve as an indicator for ongoing human exposures and body burdens of pollutants in humans. In conclusion, I posit that this novel approach in sewage epidemiology may serve to pre-screen and prioritize the several thousands of known or suspected CECs to identify those that are most prone to pose a risk to human health and the environment.
ContributorsVenkatesan, Arjunkrishna (Author) / Halden, Rolf U. (Thesis advisor) / Westerhoff, Paul (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2013
151892-Thumbnail Image.png
Description
Museums reflect power relations in society. Centuries of tradition dictate that museum professionals through years of study have more knowledge about the past and culture than the communities they present and serve. As mausoleums of intellect, museums developed cultures that are resistant to relinquishing any authority to the public. The

Museums reflect power relations in society. Centuries of tradition dictate that museum professionals through years of study have more knowledge about the past and culture than the communities they present and serve. As mausoleums of intellect, museums developed cultures that are resistant to relinquishing any authority to the public. The long history of museums as the authority over the past led to the alienation and exclusion of many groups from museums, particular indigenous communities. Since the 1970s, many Native groups across the United States established their own museums in response to the exclusion of their voices in mainstream institutions. As establishments preserving cultural material, tradition, and history, tribal museums are recreating the meaning of "museum," presenting a model of cooperation and inclusion of community members to the museum process unprecedented in other institutions. In a changing world, many scholars and professionals call for a sharing of authority in museum spaces in order to engage the pubic in new ways, yet many cultural institutions s struggle to find a way to negotiate the traditional model of a museum while working with communities. Conversely, the practice of power sharing present in Iroquois (Haudenosaunee) tradition shaped a museum culture capable of collaboration with their community. Focusing on the Akwesasne Museum as a case study, this dissertation argues that the ability for a museum to share authority of the past with its community is dependent on the history and framework of the culture of the institution, its recognition of the importance of place to informing the museum, and the use of cultural symbols to encourage collaboration. At its core, this dissertation concerns issues of authority, power, and ownership over the past in museum spaces.
ContributorsHeisinger, Meaghan (Author) / Fixico, Donald (Thesis advisor) / Szuter, Christine (Committee member) / Warren-Findley, Jannelle (Committee member) / Arizona State University (Publisher)
Created2013
151911-Thumbnail Image.png
Description
Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts,

Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4+, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2-. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).
ContributorsDoudrick, Kyle (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2013
152058-Thumbnail Image.png
Description
There is growing concern over the future availability of water for electricity generation. Because of a rapidly growing population coupled with an arid climate, the Western United States faces a particularly acute water/energy challenge, as installation of new electricity capacity is expected to be required in the areas with the

There is growing concern over the future availability of water for electricity generation. Because of a rapidly growing population coupled with an arid climate, the Western United States faces a particularly acute water/energy challenge, as installation of new electricity capacity is expected to be required in the areas with the most limited water availability. Electricity trading is anticipated to be an important strategy for avoiding further local water stress, especially during drought and in the areas with the most rapidly growing populations. Transfers of electricity imply transfers of "virtual water" - water required for the production of a product. Yet, as a result of sizable demand growth, there may not be excess capacity in the system to support trade as an adaptive response to long lasting drought. As the grid inevitably expands capacity due to higher demand, or adapts to anticipated climate change, capacity additions should be selected and sited to increase system resilience to drought. This paper explores the tradeoff between virtual water and local water/energy infrastructure development for the purpose of enhancing the Western US power grid's resilience to drought. A simple linear model is developed that estimates the economically optimal configuration of the Western US power grid given water constraints. The model indicates that natural gas combined cycle power plants combined with increased interstate trade in power and virtual water provide the greatest opportunity for cost effective and water efficient grid expansion. Such expansion, as well as drought conditions, may shift and increase virtual water trade patterns, as states with ample water resources and a competitive advantage in developing power sources become net exporters, and states with limited water or higher costs become importers.
ContributorsHerron, Seth (Author) / Ruddell, Benjamin L (Thesis advisor) / Ariaratnam, Samuel (Thesis advisor) / Allenby, Braden (Committee member) / Williams, Eric (Committee member) / Arizona State University (Publisher)
Created2013
151743-Thumbnail Image.png
Description
The Kootenai River landscape of southwestern British Columbia, northwestern Montana and the very northern tip of Idaho helped unify the indigenous Ktunaxa tribe and guided tribal lifestyles for centuries. However, the Ktunaxa bands' intimate connection with the river underwent a radical transformation during the nineteenth century. This study analyzes how

The Kootenai River landscape of southwestern British Columbia, northwestern Montana and the very northern tip of Idaho helped unify the indigenous Ktunaxa tribe and guided tribal lifestyles for centuries. However, the Ktunaxa bands' intimate connection with the river underwent a radical transformation during the nineteenth century. This study analyzes how the Ktunaxa relationship with the Kootenai River faced challenges presented by a new understanding of the meaning of landscape introduced by outside groups who began to ply the river's waters in the early 1800s. As the decades passed, the establishment of novel boundaries, including the new U.S.-Canadian border and reserve/reservation delineations, forever altered Ktunaxa interaction with the land. The very meaning of the river for the Ktunaxa as a source of subsistence, avenue of transportation and foundation of spiritual identity experienced similar modifications. In a matter of decades, authoritarian lines on foreign maps imposed a concept of landscape far removed from the tribe's relatively fluid and shifting understanding of boundary lines represented by the river at the heart of the Ktunaxa homeland. This thesis draws on early ethnographic work with the Ktunaxa tribe in addition to the journals of early traders and missionaries in the Kootenai region to describe how the Ktunaxa way of life transformed during the nineteenth century. The works of anthropologist Keith Basso and environmental philosopher David Abram are used to develop an understanding of the powerful implications of the separation of the Ktunaxa people from the landscape so essential to tribal identity and lifestyle. Two different understandings of boundaries and the human relationship with the natural world clashed along the Kootenai River in the 1800s, eventually leading to the separation of the valley's indigenous inhabitants from each other and from the land itself. What water had once connected, lines on maps now divided, redefining this extensive landscape and its meaning for the Ktunaxa people. However, throughout decades of dominance of the Western mapmakers' worldview and in spite of the overwhelming influence of this Euro-American approach to the environment, members of the Ktunaxa tribe have been able to maintain much of their traditional culture.
ContributorsColeman, Robert (Author) / Warren-Findley, Jannelle (Thesis advisor) / Szuter, Christine (Committee member) / Fixico, Donald (Committee member) / Arizona State University (Publisher)
Created2013