Matching Items (25)
Filtering by

Clear all filters

152585-Thumbnail Image.png
Description
Uranium (U) contamination has been attracting public concern, and many researchers are investigating principles and applications of U remediation. The overall goal of my research is to understand the versatile roles of sulfate-reducing bacteria (SRB) in uranium bioremediation, including direct involvement (reducing U) and indirect involvement (protecting U reoxidation). I

Uranium (U) contamination has been attracting public concern, and many researchers are investigating principles and applications of U remediation. The overall goal of my research is to understand the versatile roles of sulfate-reducing bacteria (SRB) in uranium bioremediation, including direct involvement (reducing U) and indirect involvement (protecting U reoxidation). I pursue this goal by studying Desulfovibro vuglaris, a representative SRB. For direct involvement, I performed experiments on uranium bioreduction and uraninite (UO2) production in batch tests and in a H2-based membrane biofilm reactor (MBfR) inoculated with D. vuglaris. In summary, D. vuglaris was able to immobilize soluble U(VI) by enzymatically reducing it to insoluble U(IV), and the nanocrystallinte UO2 was associated with the biomass. In the MBfR system, although D. vuglaris failed to form a biofilm, other microbial groups capable of U(VI) reduction formed a biofilm, and up to 95% U removal was achieved during a long-term operation. For the indirect involvement, I studied the production and characterization of and biogenic iron sulfide (FeS) in batch tests. In summary, D. vuglaris produced nanocrystalline FeS, a potential redox buffer to protect UO2 from remobilization by O2. My results demonstrate that a variety of controllable environmental parameters, including pH, free sulfide, and types of Fe sources and electron donors, significantly determined the characteristics of both biogenic solids, and those characteristics should affect U-sequestrating performance by SRB. Overall, my results provide a baseline for exploiting effective and sustainable approaches to U bioremediation, including the application of the novel MBfR technology to U sequestration from groundwater and biogenic FeS for protecting remobilization of sequestrated U, as well as the microbe-relevant tools to optimize U sequestration applicable in reality.
ContributorsZhou, Chen (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2014
156559-Thumbnail Image.png
Description
This research explores microbial chain elongation as a pathway for production of complex organic compounds in soils with implication for the carbon cycle. In chain elongation, simple substrates such as ethanol and short chain carboxylates such as acetate can be converted to longer carbon chain carboxylates under anaerobic conditions through

This research explores microbial chain elongation as a pathway for production of complex organic compounds in soils with implication for the carbon cycle. In chain elongation, simple substrates such as ethanol and short chain carboxylates such as acetate can be converted to longer carbon chain carboxylates under anaerobic conditions through cyclic, reverse β oxidation. This pathway elongates the carboxylate by two carbons. The chain elongation process is overall thermodynamically feasible, and microorganisms gain energy through this process. There have been limited insights into the versatility of chain elongating substrates, understanding the chain elongating microbial community, and its importance in sequestering carbon in the soils.

We used ethanol, methanol, butanol, and hydrogen as electron donors and acetate and propionate as electron acceptors to test the occurrence of microbial chain elongation in four soils with different physicochemical properties and microbial communities. Common chain elongation products were the even numbered chains butyrate, caproate, and butanol, the odd numbered carboxylates valerate and heptanoate, along with molecular hydrogen. At a near neutral pH and mesophilic temperature, we observed a stable and sustained production of longer fatty acids along with hydrogen. Microbial community analysis show phylotypes from families such as Clostridiaceae, Bacillaceae, and Ruminococcaceae in all tested conditions. Through chain elongation, the products formed are less biodegradable. They may undergo transformations and end up as organic carbon, decreasing the greenhouse gas emissions, thus, making this process important to study.
ContributorsJoshi, Sayalee (Author) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2018
156940-Thumbnail Image.png
Description
Microbial electrochemical cells (MxCs) are a novel technology that use anode-respiring bacteria (ARB) to bioremediate wastewaters and respire an electrical current, which can then be used directly to produce value-added products like hydrogen peroxide (H2O2). Ninety-five percent of the world’s H2O2 is currently produced using the anthraquinone process,

Microbial electrochemical cells (MxCs) are a novel technology that use anode-respiring bacteria (ARB) to bioremediate wastewaters and respire an electrical current, which can then be used directly to produce value-added products like hydrogen peroxide (H2O2). Ninety-five percent of the world’s H2O2 is currently produced using the anthraquinone process, whose production requires expensive and potentially carcinogenic catalysts and high amounts of electricity. However, the amount of H2O2 that can be produced from these microbial peroxide-producing cells (MPPCs) has not been thoroughly investigated. Predicting potential H2O2 production in MxCs is further complicated by a lack of mathematical models to predict performance utilizing complex waste streams like primary sludge (PS).

A reactor design methodology was developed for MPPCs to systematically optimize H2O2 production with minimal energy consumption. H2O2 stability was evaluated with different catholytes, membranes, and catalysts materials, and the findings used to design and operate long-term a dual-chamber, flat-plate MPPC using different catholytes, ferrochelating stabilizers, and hydraulic retention times (HRT). Up to 3.1 ± 0.37 g H2O2 L-1 was produced at a 4-h HRT in an MPPC with as little as 1.13 W-h g-1 H2O2 power input using NaCl catholytes. Attempts to improve H2O2 production by using weak acid buffers as catholytes or ferrochelating stabilizers failed for different reasons.

A non-steady-state mathematical model, MYAnode, was developed combinging existing wastewater treatment, anode biofilm, and chemical speciation models to predict MxC performance utilizing complex substrates. The model simulated the large-scale trends observed when operating an MPPC with PS substrate. At HRTs ≥ 12-d, the model demonstrated up to 20% Coulombic recovery. At these conditions, ARB required additional alkalinity production by ≥ 100 mgVSS/L of acetoclastic methanogens to prevent pH inhibition when little influent alkalinity is available. At lower HRTs, methanogens are unable to produce the alkalinity required to prevent ARB inhibition due to washout and rapid acidification of the system during fermentation. At ≥ 100 mgVSS/L of methanogens, increasing the diffusion layer thickness from 500 to 1000 μm improved Coulombic efficiency by 13.9%, while increasing particulate COD hydrolysis rates to 0.25/d only improved Coulombic efficiency by 3.9%.
ContributorsYoung, Michelle Nichole (Author) / Rittmann, Bruce E. (Thesis advisor) / Torres, César I (Committee member) / Marcus, Andrew K (Committee member) / Arizona State University (Publisher)
Created2018
136486-Thumbnail Image.png
Description
This study was conducted to better understand the making and measuring of renewable energy goals by the federal government. Three different energy types are studied: wind, solar, and biofuel, for two different federal departments: the Department of Defense and the Department of Energy. A statistical analysis and a meta-analysis of

This study was conducted to better understand the making and measuring of renewable energy goals by the federal government. Three different energy types are studied: wind, solar, and biofuel, for two different federal departments: the Department of Defense and the Department of Energy. A statistical analysis and a meta-analysis of current literature will be the main pieces of information. These departments and energy types were chosen as they represent the highest potential for renewable energy production. It is important to understand any trends in goal setting by the federal government, as well as to understand what these trends represent in terms of predicting renewable energy production. The conclusion for this paper is that the federal government appears to set high goals for renewable energy initiatives. While the goals appear to be high, they are designed based on required characteristics described by the federal government. These characteristics are most often technological advancements, tax incentives, or increased production, with tax incentives having the highest priority. However, more often than not these characteristics are optimistic or simply not met. This leads to the resetting of goals before any goal can be evaluated, making it difficult to determine the goal-setting ability of the federal government.
ContributorsStapleton, Andrew (Co-author) / Charnell, Matthew (Co-author) / Printezis, Antonios (Thesis director) / Kull, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
132892-Thumbnail Image.png
Description
There is an increasing need to understand and develop clean cooking technologies in low- and middle-income countries (LMICs). The provision of clean energy where modern energy is not available is important in advancing the 17 sustainable development goals as set by the United Nations. Green charcoal is a cooking fuel

There is an increasing need to understand and develop clean cooking technologies in low- and middle-income countries (LMICs). The provision of clean energy where modern energy is not available is important in advancing the 17 sustainable development goals as set by the United Nations. Green charcoal is a cooking fuel technology made from ground and compressed biochar, an organic material made from heating a feedstock (biomass, forest residues, agriculture waste, invasive species, etc.) in an oxygen deprived environment to high temperatures. Green charcoal behaves similarly to wood charcoal or coal but is different from these energy products in that it is produced from biomass, not from wood or fossil fuels. Green charcoal has gained prominence as a cooking fuel technology in South-East Asia recently. Within the context of Nepal, green charcoal is currently being produced using lantana camara, an invasive species in Nepal, as a feedstock in order to commoditize the otherwise destructive plant. The purpose of this study was to understand the innovation ecosystem of green charcoal within the context of Nepal’s renewable energy sector. An innovation ecosystem is all of the actors, users and conditions that contribute to the success of a particular method of value creation. Through a series of field interviews, it was determined that the main actors of the green charcoal innovation ecosystem are forest resources governance agencies, biochar producers, boundary organizations, briquette producers, distributors/vendors, the political economy of energy, and the food culture of individuals. The end user (user segment) of this innovation ecosystem is restaurants. Each actor was further analyzed based on the Ecosystem Pie Model methodology as created by Talmar, et al. using the actor’s individual resources, activities, value addition, value capture, dependence on green charcoal and the associated risk as the building blocks for analysis. Based on ecosystem analysis, suggestions were made on how to strengthen the green charcoal innovation ecosystem in Nepal’s renewable energy sector based on actor-actor and actor-green charcoal interactions, associated risks and dependence, and existing knowledge and technology gaps. It was determined that simply deploying a clean cooking technology does not guarantee success of the technology. Rather, there are a multitude of factors that contribute to the success of the clean cooking technology that deserve equal amounts of attention in order to successfully implement the technology.
ContributorsDieu, Megan (Author) / Chhetri, Netra (Thesis director) / Henderson, Mark (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication

This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication of which I am a co-author, as cited below.

Project 1 Abstract: Ethylene Oxychlorination
The current two-step process for the industrial process of vinyl chloride production involves CuCl2 catalyzed ethylene oxychlorination to ethylene dichloride followed by thermal cracking of the latter to vinyl chloride. To date, no industrial application of a one-step process is available. To close this gap, this work evaluates a wide range of self-prepared supported CeO2 and EuOCl catalysts for one-step production of vinyl chloride from ethylene in a fixed-bed reactor at 623 773 K and 1 bar using feed ratios of C2H4:HCl:O2:Ar:He = 3:3 6:1.5 6:3:82 89.5. Among all studied systems, CeO2/ZrO2 and CeO2/Zeolite MS show the highest activity but suffer from severe combustion of ethylene, forming COx, while 20 wt.% EuOCl/γ-Al2O3 leads to the best vinyl chloride selectivity of 87% at 15.6% C2H4 conversion with complete suppression of CO2 formation and only 4% selectivity to CO conversion for over 100 h on stream. Characterization by XRD and EDX mapping reveals that much of the Eu is present in non-active phases such as Al2Eu or EuAl4, indicating that alternative synthesis methods could be employed to better utilize the metal. A linear relationship between conversion and metal loading is found for this catalyst, indicating that always part of the used Eu is available as EuOCl, while the rest forms inactive europium aluminate species. Zeolite-supported EuOCl slightly outperforms EuOCl/γ Al2O3 in terms of total yield, but is prone to significant coking and is unstable. Even though a lot of Eu seems locked in inactive species on EuOCl/γ Al2O3, these results indicate possible savings of nearly 16,000 USD per kg of catalyst compared to a bulk EuOCl catalyst. These very promising findings constitute a crucial step for process intensification of polyvinyl chloride production and exploring the potential of supported EuOCl catalysts in industrially-relevant reactions.

Project 2 Abstract: Alkyne Semihydrogenation
Despite strongly suffering from poor noble metal utilization and a highly toxic selectivity modifier (Pb), the archetypal catalyst applied for the three-phase alkyne semihydrogenation, the Pb-doped Pd/CaCO3 (Lindlar catalyst), is still being utilized at industrial level. Inspired by the very recent strategies involving the modification of Pd with p-block elements (i.e., S), this work extrapolates the concept by preparing crystalline metal phosphides with controlled stoichiometry. To develop an affordable and environmentally-friendly alternative to traditional hydrogenation catalysts, nickel, a metal belonging to the same group as Pd and capable of splitting molecular hydrogen has been selected. Herein, a simple two-step synthesis procedure involving nontoxic precursors was used to synthesize bulk nickel phosphides with different stoichiometries (Ni2P, Ni5P4, and Ni12P5) by controlling the P:Ni ratios. To uncover structural and surface features, this catalyst family is characterized with an array of methods including X-ray diffraction (XRD), 31P magic-angle nuclear magnetic resonance (MAS-NMR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Bulk-sensitive techniques prove the successful preparation of pure phases while XPS analysis unravels the facile passivation occurring at the NixPy surface that persists even after reductive treatment. To assess the characteristic surface fingerprints of these materials, Ar sputtering was carried out at different penetration depths, reveling the presence of Ni+ and P-species. Continuous-flow three-phase hydrogenations of short-chain acetylenic compounds display that the oxidized layer covering the surface is reduced under reaction conditions, as evidenced by the induction period before reaching the steady state performance. To assess the impact of the phosphidation treatment on catalytic performance, the catalysts were benchmarked against a commercial Ni/SiO2-Al2O3 sample. While Ni/SiO2-Al2O3 presents very low selectivity to the alkene (the selectivity is about 10% at full conversion) attributed to the well-known tendency of naked nickel nanoparticles to form hydrides, the performance of nickel phosphides is highly selective and independent of P:Ni ratio. In line with previous findings on PdxS, kinetic tests indicate the occurrence of a dual-site mechanism where the alkyne and hydrogen do not compete for the same site.

This work is the subject of a publication of which I am a co-author, as cited below.

D. Albani; K. Karajovic; B. Tata; Q. Li; S. Mitchell; N. López; J. Pérez-Ramírez. Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semi-Hydrogenation. ChemCatChem 2019. doi.org/10.1002/cctc.201801430
ContributorsTata, Bharath (Author) / Deng, Shuguang (Thesis director) / Muhich, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133505-Thumbnail Image.png
Description
While biodiesel production from photosynthesizing algae is a promising form of alternative energy, the process is water and nutrient intensive. I designed a mathematical model for a photobioreactor system that filters the reactor effluent and returns the permeate to the system so that unutilized nutrients are not wasted, addressing these

While biodiesel production from photosynthesizing algae is a promising form of alternative energy, the process is water and nutrient intensive. I designed a mathematical model for a photobioreactor system that filters the reactor effluent and returns the permeate to the system so that unutilized nutrients are not wasted, addressing these problems. The model tracks soluble and biomass components that govern the rates of the processes within the photobioreactor (PBR). It considers light attenuation and inhibition, nutrient limitation, preference for ammonia consumption over nitrate, production of soluble microbial products (SMP) and extracellular polymeric substance (EPS), and competition with heterotrophic bacteria that predominately consume SMP. I model a continuous photobioreactor + microfiltration system under nine unique operation conditions - three dilution rates and three recycling rates. I also evaluate the health of a PBR under different dilution rates for two values of qpred. I evaluate the success of each run by calculating values such as biomass productivity and specific biomass yield. The model shows that for low dilution rates (D = <0.2 d-1) and high recycling rates (>66%), nutrient limitation can lead to a PBR crash. In balancing biomass productivity with water conservation, the most favorable runs were those in which the dilution rate and the recycling rate were highest. In a second part of my thesis, I developed a model that describes the interactions of phototrophs and their predators. The model also shows that dilution rates corresponding to realistic PBR operation can washout predators from the system, but the simulation outputs depend heavily on the accuracy of parameters that are not well defined.
ContributorsWik, Benjamin Philip (Author) / Marcus, Andrew (Thesis director) / Rittmann, Bruce (Committee member) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154541-Thumbnail Image.png
Description
Microbial electrochemical cells (MXCs) serve as an alternative anaerobic technology to anaerobic digestion for efficient energy recovery from high-strength organic wastes such as primary sludge (PS). The overarching goal of my research was to address energy conversion from PS to useful resources (e.g. hydrogen or hydrogen peroxide) through bio-

Microbial electrochemical cells (MXCs) serve as an alternative anaerobic technology to anaerobic digestion for efficient energy recovery from high-strength organic wastes such as primary sludge (PS). The overarching goal of my research was to address energy conversion from PS to useful resources (e.g. hydrogen or hydrogen peroxide) through bio- and electro-chemical anaerobic conversion processes in MXCs.

First, a new flat-pate microbial electrolysis cell (MEC) was designed with high surface area anodes using carbon fibers, but without creating a large distance between the anode and the cathode (<0.5 cm) to reduce Ohmic overpotential. Through the improved design, operation, and electrochemical characterization, the applied voltages were reduced from 1.1 to ~0.85 V, at 10 A m-2. Second, PS conversion was examined through hydrolysis, fermentation, methanogenesis, and/or anode respiration. Since pretreatment often is required to accelerate hydrolysis of organic solids, I evaluated pulsed electric field technology on PS showing a modest improvement of energy conversion through methanogenesis and fermentation, as compared to the conversion from waste activated sludge (WAS) or WAS+PS. Then, a two-stage system (prefermented PS-fed MEC) yielded successful performance in terms of Coulombic efficiency (95%), Coulombic recovery (CR, 80%), and COD-removal efficiency (85%). However, overall PS conversion to electrical current (or CR) through pre-fermentation and MEC, was just ~16%. Next, a single-stage system (direct PS-fed MEC) with semi-continuous operation showed 34% CR at a 9-day hydraulic retention time. The PS-fed MEC also showed an important pH dependency, in which high pH (> 8) in the anode chamber improved anode respiration along with methanogen inhibition. Finally, H2O2 was produced in a PS-fed microbial electrochemical cell with a low energy requirement (~0.87 kWh per kg H2O2). These research developments will provide groundbreaking knowledge for MXC design, commercial application, and anaerobic energy conversion from other high-strength organic wastes to resources.
ContributorsKi, Dong Won (Author) / Torres, César I (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Parameswaran, Prathap (Committee member) / Popat, Sudeep C (Committee member) / Arizona State University (Publisher)
Created2016
154650-Thumbnail Image.png
Description
The finite supply of current energy production materials has created opportunities for the investigation of alternative energy sources in many fields. One example is the use of microorganisms in bioenergy applications, such as microbial fuel cells. Present in many types of environments, microorganisms with the ability to respire

The finite supply of current energy production materials has created opportunities for the investigation of alternative energy sources in many fields. One example is the use of microorganisms in bioenergy applications, such as microbial fuel cells. Present in many types of environments, microorganisms with the ability to respire solid electron acceptors have become of increasing relevance to alternative energy and wastewater treatment research. In this dissertation, several aspects of anode respiration are investigated, with the goal of increasing the limited understanding of the mechanisms of electron transport through the use of advanced electrochemical methods. Biofilms of Geobacter sulfurreducens, the model anode respiring organism, as well as its alkaliphilic relative, Geoalkalibacter ferrihydriticus, were investigated using chronoamperometry, electrochemical impedance spectroscopy, and cyclic voltammetry.

In G. sulfurreducens, two distinct pathways of electron transport were observed through the application of advanced electrochemical techniques on anode biofilms in microbial electrochemical cells. These pathways were found to be preferentially expressed, based on the poised anode potential (redox potential) of the electrode. In Glk. ferrihydriticus, four pathways for electron transport were found, showing an even greater diversity in electron transport pathway utilization as compared to G. sulfurreducens. These observations provide insights into the diversity of electron transport pathways present in anode-respiring bacteria and introduce the necessity of further characterization for pathway identification.

Essential to science today, communication of pressing scientific issues to the lay audience may present certain difficulties. This can be seen especially with the topics that are considered socio-scientific issues, those considered controversial in society but not for scientists. This dissertation explores the presentation of alternative and renewable energy technologies and climate change in undergraduate education. In introductory-level Biology, Chemistry, and Physics textbooks, the content and terminology presented were analyzed for individual textbooks and used to evaluate discipline-based trends. Additional extensions were made between teaching climate change with the active learning technique of citizen science using past research gains from studies of evolution. These observations reveal patterns in textbook content for energy technologies and climate change, as well as exploring new aspects of teaching techniques.
ContributorsYoho, Rachel Ann (Author) / Torres, César I (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Popat, Sudeep C (Committee member) / Vanmali, Binaben H (Committee member) / Arizona State University (Publisher)
Created2016
154683-Thumbnail Image.png
Description
The application of microalgal biofilms in wastewater treatment has great advantages such as abolishing the need for energy intensive aerators and recovering nutrients as energy, thus reducing the energy requirement of wastewater treatment several-fold. A 162 cm2 algal biofilm reactor with good wastewater treatment performance and a regular harvesting procedure

The application of microalgal biofilms in wastewater treatment has great advantages such as abolishing the need for energy intensive aerators and recovering nutrients as energy, thus reducing the energy requirement of wastewater treatment several-fold. A 162 cm2 algal biofilm reactor with good wastewater treatment performance and a regular harvesting procedure was studied at lab scale to gain an understanding of effectual parameters such as hydraulic retention time (HRT; 2.6 and 1.3 hrs), liquid level (LL; 0.5 and 1.0 cm), and solids retention time (SRT; 3 and 1.5 wks). A revised synthetic wastewater “Syntho 3.7” was used as a surrogate of domestic primary effluent for nutrient concentration consistency in the feed lines. In the base case (2.6 hr HRT, 0.5 cm LL, and 3 wk SRT), percent removals of 69 ± 2 for total nitrogen (TN), 54 ± 21 for total phosphorous (TP), and 60 ± 7 for chemical oxygen demand (COD) were achieved and 4.0 ± 1.6 g/m2/d dry biomass was produced. A diffusion limitation was encountered when increasing the liquid level, while the potential to further decrease the HRT remains. Nonlinear growth kinetics was observed in comparing SRT variations, and promoting autotrophic growth seems possible. Future work will look towards producing a mathematical model and further testing the aptness of this system for large-scale implementation.
ContributorsHalloum, Ibrahim (Author) / Torres, César I (Thesis advisor) / Popat, Sudeep C (Committee member) / Rittmann, Bruce E. (Committee member) / Arizona State University (Publisher)
Created2016