Matching Items (11)
Filtering by

Clear all filters

149822-Thumbnail Image.png
Description
It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive

It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive dust control. Most of these polymer stabilizers are expensive synthetic polymer products. Their adverse effects and expense usually limits their use. Biopolymers provide a potential alternative to synthetic polymers. They can provide dust abatement by encapsulating soil particles and creating a binding network throughout the treated area. This research into the effectiveness of biopolymers for fugitive dust control involved three phases. Phase I included proof of concept tests. Phase II included carrying out the tests in a wind tunnel. Phase III consisted of conducting the experiments in the field. Proof of concept tests showed that biopolymers have the potential to reduce soil erosion and fugitive dust transport. Wind tunnel tests on two candidate biopolymers, xanthan and chitosan, showed that there is a proportional relationship between biopolymer application rates and threshold wind velocities. The wind tunnel tests also showed that xanthan gum is more successful in the field than chitosan. The field tests showed that xanthan gum was effective at controlling soil erosion. However, the chitosan field data was inconsistent with the xanthan data and field data on bare soil.
ContributorsAlsanad, Abdullah (Author) / Kavazanjian, Edward (Thesis advisor) / Edwards, David (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2011
151072-Thumbnail Image.png
Description

Perpetual Pavements, if properly designed and rehabilitated, it can last longer than 50 years without major structural rehabilitation. Fatigue endurance limit is a key parameter for designing perpetual pavements to mitigate bottom-up fatigue cracking. The endurance limit has not been implemented in the Mechanistic Empirical Pavement Design Guide software, currently

Perpetual Pavements, if properly designed and rehabilitated, it can last longer than 50 years without major structural rehabilitation. Fatigue endurance limit is a key parameter for designing perpetual pavements to mitigate bottom-up fatigue cracking. The endurance limit has not been implemented in the Mechanistic Empirical Pavement Design Guide software, currently known as DARWin-ME. This study was conducted as part of the National Cooperative Highway Research Program (NCHRP) Project 9-44A to develop a framework and mathematical methodology to determine the fatigue endurance limit using the uniaxial fatigue test. In this procedure, the endurance limit is defined as the allowable tensile strains at which a balance takes place between the fatigue damage during loading, and the healing during the rest periods between loading pulses. The viscoelastic continuum damage model was used to isolate time dependent damage and healing in hot mix asphalt from that due to fatigue. This study also included the development of a uniaxial fatigue test method and the associated data acquisition computer programs to conduct the test with and without rest period. Five factors that affect the fatigue and healing behavior of asphalt mixtures were evaluated: asphalt content, air voids, temperature, rest period and tensile strain. Based on the test results, two Pseudo Stiffness Ratio (PSR) regression models were developed. In the first model, the PSR was a function of the five factors and the number of loading cycles. In the second model, air voids, asphalt content, and temperature were replaced by the initial stiffness of the mix. In both models, the endurance limit was defined when PSR is equal to 1.0 (net damage is equal to zero). The results of the first model were compared to the results of a stiffness ratio model developed based on a parallel study using beam fatigue test (part of the same NCHRP 9-44A). The endurance limit values determined from uniaxial and beam fatigue tests showed very good correlation. A methodology was described on how to incorporate the second PSR model into fatigue analysis and damage using the DARWin-ME software. This would provide an effective and efficient methodology to design perpetual flexible pavements.

ContributorsZeiada, Waleed (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew W. (Thesis advisor) / Zapata, Claudia (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2012
134647-Thumbnail Image.png
Description
The overall goal of this project is to use metallic nanoparticles to develop a thin, ductile amorphous film at room temperature. Currently bulk metallic glasses are mainly formed via quenching, which requires very high cooling rates to achieve an amorphous molecular structure. These formations often fail in a brittle manner.

The overall goal of this project is to use metallic nanoparticles to develop a thin, ductile amorphous film at room temperature. Currently bulk metallic glasses are mainly formed via quenching, which requires very high cooling rates to achieve an amorphous molecular structure. These formations often fail in a brittle manner. The advantages of using a bottom-up approach with amorphous nanoparticles at ambient conditions is that the ductility of the metal can be improved, and the process will be less energy intensive. The nanoparticles used are iron precursors with ATMP and DTPMP ligand stabilizers and dispersed in methanol. Three forms of experimentation were applied over the course of this project. The first was a simple, preliminary data collection approach where the particles were dispersed onto a glass slide and left to dry under various conditions. The second method was hypersonic particle deposition, which accelerated the particles to high speeds and bombarded onto a glass or silicon substrate. The third method used Langmuir-Blodgett concepts and equipment to make a film. Qualitative analyses were used to determine the efficacy of each approach, including SEM imaging. In the end, none of the approaches proved successful. The first approach showed inconsistencies in the film formation and aggregation of the particles. The results from the hypersonic particle deposition technique showed that not enough particles were deposited to make a consistent film, and many of the particles that were able to be deposited were aggregated. The Langmuir-Blodgett method showed potential, but aggregation of the particles and uneven film formation were challenges here as well. Although there are ways the three discussed experimental approaches could be optimized, the next best step is to try completely new approaches, such as convective assembly and 3D printing to form the ideal nanoparticle film.
ContributorsKline, Katelyn Ann (Author) / Lind, Mary Laura (Thesis director) / Cay, Pinar (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133505-Thumbnail Image.png
Description
While biodiesel production from photosynthesizing algae is a promising form of alternative energy, the process is water and nutrient intensive. I designed a mathematical model for a photobioreactor system that filters the reactor effluent and returns the permeate to the system so that unutilized nutrients are not wasted, addressing these

While biodiesel production from photosynthesizing algae is a promising form of alternative energy, the process is water and nutrient intensive. I designed a mathematical model for a photobioreactor system that filters the reactor effluent and returns the permeate to the system so that unutilized nutrients are not wasted, addressing these problems. The model tracks soluble and biomass components that govern the rates of the processes within the photobioreactor (PBR). It considers light attenuation and inhibition, nutrient limitation, preference for ammonia consumption over nitrate, production of soluble microbial products (SMP) and extracellular polymeric substance (EPS), and competition with heterotrophic bacteria that predominately consume SMP. I model a continuous photobioreactor + microfiltration system under nine unique operation conditions - three dilution rates and three recycling rates. I also evaluate the health of a PBR under different dilution rates for two values of qpred. I evaluate the success of each run by calculating values such as biomass productivity and specific biomass yield. The model shows that for low dilution rates (D = <0.2 d-1) and high recycling rates (>66%), nutrient limitation can lead to a PBR crash. In balancing biomass productivity with water conservation, the most favorable runs were those in which the dilution rate and the recycling rate were highest. In a second part of my thesis, I developed a model that describes the interactions of phototrophs and their predators. The model also shows that dilution rates corresponding to realistic PBR operation can washout predators from the system, but the simulation outputs depend heavily on the accuracy of parameters that are not well defined.
ContributorsWik, Benjamin Philip (Author) / Marcus, Andrew (Thesis director) / Rittmann, Bruce (Committee member) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133676-Thumbnail Image.png
Description
Gold nanoparticles are valuable for their distinct properties and nanotechnology applications. Because their properties are controlled in part by nanoparticle size, manipulation of synthesis method is vital, since the chosen synthesis method has a significant effect on nanoparticle size. By aiding mediating synthesis with proteins, unique nanoparticle structures can form,

Gold nanoparticles are valuable for their distinct properties and nanotechnology applications. Because their properties are controlled in part by nanoparticle size, manipulation of synthesis method is vital, since the chosen synthesis method has a significant effect on nanoparticle size. By aiding mediating synthesis with proteins, unique nanoparticle structures can form, which open new possibilities for potential applications. Furthermore, protein-mediated synthesis favors conditions that are more environmentally and biologically friendly than traditional synthesis methods. Thus far, gold particles have been synthesized through mediation with jack bean urease (JBU) and para mercaptobenzoic acid (p-MBA). Nanoparticles synthesized with JBU were 80-90nm diameter in size, while those mediated by p-MBA were revealed by TEM to have a size between 1-3 nm, which was consistent with the expectation based on the black-red color of solution. Future trials will feature replacement of p-MBA by amino acids of similar structure, followed by peptides containing similarly structured amino acids.
ContributorsHathorn, Gregory Michael (Author) / Nannenga, Brent (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134977-Thumbnail Image.png
Description
Polymer-nanoparticle composites (PNCs) show improved chemical and physical properties compared to pure polymers. However, nanoparticles dispersed in a polymer matrix tend to aggregate due to strong interparticle interactions. Electrospun nanofibers impregnated with nanoparticles have shown improved dispersion of nanoparticles. Currently, there are few models for quantifying dispersion in a PNC,

Polymer-nanoparticle composites (PNCs) show improved chemical and physical properties compared to pure polymers. However, nanoparticles dispersed in a polymer matrix tend to aggregate due to strong interparticle interactions. Electrospun nanofibers impregnated with nanoparticles have shown improved dispersion of nanoparticles. Currently, there are few models for quantifying dispersion in a PNC, and none for electrospun PNC fibers. A simulation model was developed to quantify the effects of nanoparticle volume loading and fiber to particle diameter ratios on the dispersion in a nanofiber. The dispersion was characterized using the interparticle distance along the fiber. Distributions of the interparticle distance were fit to Weibull distributions and a two-parameter empirical equation for the mean and standard deviation was found. A dispersion factor was defined to quantify the dispersion along the polymer fiber. This model serves as a standard for comparison for future experimental studies through its comparability with microscopy techniques, and as way to quantify and predict dispersion in polymer-nanoparticle electrospinning systems with a single performance metric.
ContributorsBalzer, Christopher James (Author) / Mu, Bin (Thesis director) / Armstrong, Mitchell (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135735-Thumbnail Image.png
Description
One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to

One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to recover potable water from waste. For use as the water-selective component in this membrane design Linde Type A zeolites were synthesized for optimal size without the use of a template. Current template-free synthesis of zeolite LTA produces particles that are too large for our application therefore the particle size was reduced in this study to reduce fouling of the membrane while also investigating the nanoparticle synthesis mechanisms. The time and temperature of the reaction and the aging of the precursor gel were systematically modified and observed to determine the optimal conditions for producing the particles. Scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray analysis were used for characterization. Sub-micron sized particles were synthesized at 2 weeks aging time at -8°C with an average size of 0.6 micrometers, a size suitable for our membrane. There is a limit to the posterity and uniformity of particles produced from modifying the reaction time and temperature. All results follow general crystallization theory. Longer aging produced smaller particles, consistent with nucleation theory. Spinodal decomposition is predicted to affect nucleation clustering during aging due to the temperature scheme. Efforts will be made to shorten the effective aging time and these particles will eventually be incorporated into our mixed matrix osmosis membrane.
ContributorsKing, Julia Ann (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135296-Thumbnail Image.png
Description
Alternative ion exchange membranes for implementation in a peroxide production microbial electrochemical cel (PP-MEC) are explored through membrane stability tests with NaCl electrolyte and stabilizer EDTA at varying operational pHs. PP-MEC performance parameters \u2014 H2O2 concentration, current density, coulombic efficiency and power input required \u2014 are optimized over a 7

Alternative ion exchange membranes for implementation in a peroxide production microbial electrochemical cel (PP-MEC) are explored through membrane stability tests with NaCl electrolyte and stabilizer EDTA at varying operational pHs. PP-MEC performance parameters \u2014 H2O2 concentration, current density, coulombic efficiency and power input required \u2014 are optimized over a 7 month continuous operation period based on their response to changes in HRT, EDTA concentration, air flow rate and electrolyte. I found that EDTA was compatible for use with the membranes. I also determined that AMI membranes were preferable to CMI and FAA because it was consistently stable and maintained its structural integrity. Still, I suggest testing more membranes because the AMI degraded in continuous operation. The PP-MEC produced up to 0.38 wt% H2O2, enough to perform water treatment through the Fenton process and significantly greater than the 0.13 wt% batch PP-MEC tests by previous researchers. It ran at > 0.20 W-hr/g H2O2 power input, ~ three orders of magnitude less than what is required for the anthraquinone process. I recommend high HRT and EDTA concentration while running the PP- MEC to increase H2O2 concentration, but low HRT and low EDTA concentration to decrease power input required. I recommend NaCl electrolyte but suggest testing new electrolytes that may control pH without degrading H2O2. I determined that air flow rate has no effect on PP-MEC operation. These recommendations should optimize PP-MEC operation based on its application.
ContributorsChowdhury, Nadratun Naeem (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

With an estimated 19.3 million cases and nearly 10 million deaths from cancer in a year worldwide, immunotherapies, which stimulate the immune system so that it can attack and kill cancer cells, are of interest. Tumors are produced from the uncontrolled and rapid proliferation of cells in the body. Cancer

With an estimated 19.3 million cases and nearly 10 million deaths from cancer in a year worldwide, immunotherapies, which stimulate the immune system so that it can attack and kill cancer cells, are of interest. Tumors are produced from the uncontrolled and rapid proliferation of cells in the body. Cancer cells rely heavily on glutamine for proliferation due to its contribution of nitrogen for nucleotides and amino acids. Glutamine enters the tricarboxylic acid (TCA) cycle as α-ketoglutarate via glutaminolysis, in which glutamine is converted into glutamate by the enzyme glutaminase (GLS). Cancer cell proliferation may be limited by using glutaminase inhibitor CB-839. However, immune cells also rely on these metabolic pathways. Thus, a method for restarting the metabolic pathways in the presence of inhibitors is attractive. Succinate, a key metabolite in the TCA cycle, has been shown to stimulate the immune system despite the presence of metabolic inhibitors, such as CB-839. A delivery method of succinate is through microparticles (MPs) or nanoparticles (NPs) which may be coated in polyethylene glycol (PEG) for improved hydrophilicity. Polyethylene glycol succinate (PEGS) MPs were generated and tested in vivo and were shown to reduce tumor growth and prolong mouse survival. With the success in stimulating the immune system with MPs, NPs were investigated for an improved immune response due to their smaller size. These PES NPs were generated in this study. For clinical settings, it is necessary to scale-up the production of particles. Two methods of scale-up were proposed: (1) a combination of multiple small batches into a mixed batch, and (2) a singular, big batch. Size and release properties were compared to a small batch of PES NPs, and it was concluded that the big batch more closely resembled the small batch compared to the mixed batch. Thus, it was concluded that batch-to-batch variability plays a larger role than volume changes when scaling-up. In clinical settings, it is recommended to produce the particles in a big batch rather than a mixed batch.

ContributorsSundem, Alison (Author) / Acharya, Abhinav (Thesis director) / Inamdar, Sahil (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05
187403-Thumbnail Image.png
Description
The reactive transport related to microbially induced desaturation and precipitation (MIDP) via dissimilatory reduction of nitrogen (denitrification) in a sand layer trapped between the two silt layers was evaluated experimentally. MIDP is an emerging non-disruptive liquefaction mitigation technique that stimulates naturally occurring microorganisms to reduce nitrate to nitrogen gas and

The reactive transport related to microbially induced desaturation and precipitation (MIDP) via dissimilatory reduction of nitrogen (denitrification) in a sand layer trapped between the two silt layers was evaluated experimentally. MIDP is an emerging non-disruptive liquefaction mitigation technique that stimulates naturally occurring microorganisms to reduce nitrate to nitrogen gas and oxidize organic carbon to inorganic carbon. The relatively insoluble nitrogen gas desaturates the soil and carbonate ions combine with calcium ions in the pore water and precipitate as calcium carbonate (CaCO3). Both desaturation and carbonate precipitation can mitigate liquefaction potential, but both processes, along with biomass formation, also modify the hydraulic properties of the soil, complicating the treatment process. Several studies have already demonstrated the mechanical response for MIDP treated homogenous granular soils at the bench scale. In addition, tank tests performed by Stallings Young et al. 2021 in coarse sand and stratified sandy soil conditions have been performed to evaluate the reactive transport and treatment performance at meter-scale planar flow conditions in uniform and stratified sand layers. However, there are many instances in the field where liquefiable sand layers are overlain by thin silt layers. Knowledge of the distribution of substrates and products and their effect on the reactive transport in such stratified soil conditions and the longevity of the gas bubbles is limited. In this study, an experiment was performed simulating two-dimensional planar flow conditions to evaluate the condition where a liquefiable sand layer is confined between silt layers. Multiple treatment cycles were employed targeting a maximum iii average CaCO3 content of 1%. Time lapse image analysis of the flow of substrates throughout the process was used to determine seepage velocity and monitor changes in the hydraulic properties of the soil and the migration and persistence of desaturation throughout and after the treatment. The measurement results of various embedded sensors were used to analyze the effectiveness of MIDP treatment and distribution of substrates and products throughout the treated soil with time. Results highlighted various mechanisms by which gas could migrate through the soil.
ContributorsKarmacharya, Deepesh (Author) / Kavazanjain, Edward (Thesis advisor) / van Paasses, Leon (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2023