Matching Items (17)
Filtering by

Clear all filters

151953-Thumbnail Image.png
Description
Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first

Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first part of the dissertation, a distributed detection scheme where the sensors transmit with constant modulus signals over a Gaussian multiple access channel is considered. The deflection coefficient of the proposed scheme is shown to depend on the characteristic function of the sensing noise, and the error exponent for the system is derived using large deviation theory. Optimization of the deflection coefficient and error exponent are considered with respect to a transmission phase parameter for a variety of sensing noise distributions including impulsive ones. The proposed scheme is also favorably compared with existing amplify-and-forward (AF) and detect-and-forward (DF) schemes. The effect of fading is shown to be detrimental to the detection performance and simulations are provided to corroborate the analytical results. The second part of the dissertation studies a distributed inference scheme which uses bounded transmission functions over a Gaussian multiple access channel. The conditions on the transmission functions under which consistent estimation and reliable detection are possible is characterized. For the distributed estimation problem, an estimation scheme that uses bounded transmission functions is proved to be strongly consistent provided that the variance of the noise samples are bounded and that the transmission function is one-to-one. The proposed estimation scheme is compared with the amplify and forward technique and its robustness to impulsive sensing noise distributions is highlighted. It is also shown that bounded transmissions suffer from inconsistent estimates if the sensing noise variance goes to infinity. For the distributed detection problem, similar results are obtained by studying the deflection coefficient. Simulations corroborate our analytical results. In the third part of this dissertation, the problem of estimating the average of samples distributed at the nodes of a sensor network is considered. A distributed average consensus algorithm in which every sensor transmits with bounded peak power is proposed. In the presence of communication noise, it is shown that the nodes reach consensus asymptotically to a finite random variable whose expectation is the desired sample average of the initial observations with a variance that depends on the step size of the algorithm and the variance of the communication noise. The asymptotic performance is characterized by deriving the asymptotic covariance matrix using results from stochastic approximation theory. It is shown that using bounded transmissions results in slower convergence compared to the linear consensus algorithm based on the Laplacian heuristic. Simulations corroborate our analytical findings. Finally, a robust distributed average consensus algorithm in which every sensor performs a nonlinear processing at the receiver is proposed. It is shown that non-linearity at the receiver nodes makes the algorithm robust to a wide range of channel noise distributions including the impulsive ones. It is shown that the nodes reach consensus asymptotically and similar results are obtained as in the case of transmit non-linearity. Simulations corroborate our analytical findings and highlight the robustness of the proposed algorithm.
ContributorsDasarathan, Sivaraman (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Reisslein, Martin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152455-Thumbnail Image.png
Description
This dissertation introduces stochastic ordering of instantaneous channel powers of fading channels as a general method to compare the performance of a communication system over two different channels, even when a closed-form expression for the metric may not be available. Such a comparison is with respect to a variety of

This dissertation introduces stochastic ordering of instantaneous channel powers of fading channels as a general method to compare the performance of a communication system over two different channels, even when a closed-form expression for the metric may not be available. Such a comparison is with respect to a variety of performance metrics such as error rates, outage probability and ergodic capacity, which share common mathematical properties such as monotonicity, convexity or complete monotonicity. Complete monotonicity of a metric, such as the symbol error rate, in conjunction with the stochastic Laplace transform order between two fading channels implies the ordering of the two channels with respect to the metric. While it has been established previously that certain modulation schemes have convex symbol error rates, there is no study of the complete monotonicity of the same, which helps in establishing stronger channel ordering results. Toward this goal, the current research proves for the first time, that all 1-dimensional and 2-dimensional modulations have completely monotone symbol error rates. Furthermore, it is shown that the frequently used parametric fading distributions for modeling line of sight exhibit a monotonicity in the line of sight parameter with respect to the Laplace transform order. While the Laplace transform order can also be used to order fading distributions based on the ergodic capacity, there exist several distributions which are not Laplace transform ordered, although they have ordered ergodic capacities. To address this gap, a new stochastic order called the ergodic capacity order has been proposed herein, which can be used to compare channels based on the ergodic capacity. Using stochastic orders, average performance of systems involving multiple random variables are compared over two different channels. These systems include diversity combining schemes, relay networks, and signal detection over fading channels with non-Gaussian additive noise. This research also addresses the problem of unifying fading distributions. This unification is based on infinite divisibility, which subsumes almost all known fading distributions, and provides simplified expressions for performance metrics, in addition to enabling stochastic ordering.
ContributorsRajan, Adithya (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Bliss, Daniel (Committee member) / Kosut, Oliver (Committee member) / Arizona State University (Publisher)
Created2014
153334-Thumbnail Image.png
Description
Three dimensional (3-D) ultrasound is safe, inexpensive, and has been shown to drastically improve system ease-of-use, diagnostic efficiency, and patient throughput. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications.

In this dissertation, algorithm-architecture co-design techniques that aim to make hand-held 3-D ultrasound

Three dimensional (3-D) ultrasound is safe, inexpensive, and has been shown to drastically improve system ease-of-use, diagnostic efficiency, and patient throughput. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications.

In this dissertation, algorithm-architecture co-design techniques that aim to make hand-held 3-D ultrasound a reality are presented. First, image enhancement methods to improve signal-to-noise ratio (SNR) are proposed. These include virtual source firing techniques and a low overhead digital front-end architecture using orthogonal chirps and orthogonal Golay codes.

Second, algorithm-architecture co-design techniques to reduce the power consumption of 3-D SAU imaging systems is presented. These include (i) a subaperture multiplexing strategy and the corresponding apodization method to alleviate the signal bandwidth bottleneck, and (ii) a highly efficient iterative delay calculation method to eliminate complex operations such as multiplications, divisions and square-root in delay calculation during beamforming. These techniques were used to define Sonic Millip3De, a 3-D die stacked architecture for digital beamforming in SAU systems. Sonic Millip3De produces 3-D high resolution images at 2 frames per second with system power consumption of 15W in 45nm technology.

Third, a new beamforming method based on separable delay decomposition is proposed to reduce the computational complexity of the beamforming unit in an SAU system. The method is based on minimizing the root-mean-square error (RMSE) due to delay decomposition. It reduces the beamforming complexity of a SAU system by 19x while providing high image fidelity that is comparable to non-separable beamforming. The resulting modified Sonic Millip3De architecture supports a frame rate of 32 volumes per second while maintaining power consumption of 15W in 45nm technology.

Next a 3-D plane-wave imaging system that utilizes both separable beamforming and coherent compounding is presented. The resulting system has computational complexity comparable to that of a non-separable non-compounding baseline system while significantly improving contrast-to-noise ratio and SNR. The modified Sonic Millip3De architecture is now capable of generating high resolution images at 1000 volumes per second with 9-fire-angle compounding.
ContributorsYang, Ming (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Karam, Lina (Committee member) / Frakes, David (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2015
151093-Thumbnail Image.png
Description
This thesis aims to investigate the capacity and bit error rate (BER) performance of multi-user diversity systems with random number of users and considers its application to cognitive radio systems. Ergodic capacity, normalized capacity, outage capacity, and average bit error rate metrics are studied. It has been found that the

This thesis aims to investigate the capacity and bit error rate (BER) performance of multi-user diversity systems with random number of users and considers its application to cognitive radio systems. Ergodic capacity, normalized capacity, outage capacity, and average bit error rate metrics are studied. It has been found that the randomization of the number of users will reduce the ergodic capacity. A stochastic ordering framework is adopted to order user distributions, for example, Laplace transform ordering. The ergodic capacity under different user distributions will follow their corresponding Laplace transform order. The scaling law of ergodic capacity with mean number of users under Poisson and negative binomial user distributions are studied for large mean number of users and these two random distributions are ordered in Laplace transform ordering sense. The ergodic capacity per user is defined and is shown to increase when the total number of users is randomized, which is the opposite to the case of unnormalized ergodic capacity metric. Outage probability under slow fading is also considered and shown to decrease when the total number of users is randomized. The bit error rate (BER) in a general multi-user diversity system has a completely monotonic derivative, which implies that, according to the Jensen's inequality, the randomization of the total number of users will decrease the average BER performance. The special case of Poisson number of users and Rayleigh fading is studied. Combining with the knowledge of regular variation, the average BER is shown to achieve tightness in the Jensen's inequality. This is followed by the extension to the negative binomial number of users, for which the BER is derived and shown to be decreasing in the number of users. A single primary user cognitive radio system with multi-user diversity at the secondary users is proposed. Comparing to the general multi-user diversity system, there exists an interference constraint between secondary and primary users, which is independent of the secondary users' transmission. The secondary user with high- est transmitted SNR which also satisfies the interference constraint is selected to communicate. The active number of secondary users is a binomial random variable. This is then followed by a derivation of the scaling law of the ergodic capacity with mean number of users and the closed form expression of average BER under this situation. The ergodic capacity under binomial user distribution is shown to outperform the Poisson case. Monte-Carlo simulations are used to supplement our analytical results and compare the performance of different user distributions.
ContributorsZeng, Ruochen (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Duman, Tolga (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2012
156331-Thumbnail Image.png
Description
Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.
ContributorsHenderson, Christopher (Author) / Bansal, Ajay (Thesis advisor) / Lindquist, Timothy (Committee member) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2018
156504-Thumbnail Image.png
Description
The Internet of Things (IoT) has become a more pervasive part of everyday life. IoT networks such as wireless sensor networks, depend greatly on the limiting unnecessary power consumption. As such, providing low-power, adaptable software can greatly improve network design. For streaming live video content, Wireless Video Sensor Network Platform

The Internet of Things (IoT) has become a more pervasive part of everyday life. IoT networks such as wireless sensor networks, depend greatly on the limiting unnecessary power consumption. As such, providing low-power, adaptable software can greatly improve network design. For streaming live video content, Wireless Video Sensor Network Platform compatible Dynamic Adaptive Streaming over HTTP (WVSNP-DASH) aims to revolutionize wireless segmented video streaming by providing a low-power, adaptable framework to compete with modern DASH players such as Moving Picture Experts Group (MPEG-DASH) and Apple’s Hypertext Transfer Protocol (HTTP) Live Streaming (HLS). Each segment is independently playable, and does not depend on a manifest file, resulting in greatly improved power performance. My work was to show that WVSNP-DASH is capable of further power savings at the level of the wireless sensor node itself if a native capture program is implemented at the camera sensor node. I created a native capture program in the C language that fulfills the name-based segmentation requirements of WVSNP-DASH. I present this program with intent to measure its power consumption on a hardware test-bed in future. To my knowledge, this is the first program to generate WVSNP-DASH playable video segments. The results show that our program could be utilized by WVSNP-DASH, but there are issues with the efficiency, so provided are an additional outline for further improvements.
ContributorsKhan, Zarah (Author) / Reisslein, Martin (Thesis advisor) / Seema, Adolph (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2018
154672-Thumbnail Image.png
Description
In recent years, there has been an increased interest in sharing available bandwidth to avoid spectrum congestion. With an ever-increasing number wireless users, it is critical to develop signal processing based spectrum sharing algorithms to achieve cooperative use of the allocated spectrum among multiple systems in order to reduce

In recent years, there has been an increased interest in sharing available bandwidth to avoid spectrum congestion. With an ever-increasing number wireless users, it is critical to develop signal processing based spectrum sharing algorithms to achieve cooperative use of the allocated spectrum among multiple systems in order to reduce interference between systems. This work studies the radar and communications systems coexistence problem using two main approaches. The first approach develops methodologies to increase radar target tracking performance under low signal-to-interference-plus-noise ratio (SINR) conditions due to the coexistence of strong communications interference. The second approach jointly optimizes the performance of both systems by co-designing a common transmit waveform.

When concentrating on improving radar tracking performance, a pulsed radar that is tracking a single target coexisting with high powered communications interference is considered. Although the Cramer-Rao lower bound (CRLB) on the covariance of an unbiased estimator of deterministic parameters provides a bound on the estimation mean squared error (MSE), there exists an SINR threshold at which estimator covariance rapidly deviates from the CRLB. After demonstrating that different radar waveforms experience different estimation SINR thresholds using the Barankin bound (BB), a new radar waveform design method is proposed based on predicting the waveform-dependent BB SINR threshold under low SINR operating conditions.

A novel method of predicting the SINR threshold value for maximum likelihood estimation (MLE) is proposed. A relationship is shown to exist between the formulation of the BB kernel and the probability of selecting sidelobes for the MLE. This relationship is demonstrated as an accurate means of threshold prediction for the radar target parameter estimation of frequency, time-delay and angle-of-arrival.



For the co-design radar and communications system problem, the use of a common transmit waveform for a pulse-Doppler radar and a multiuser communications system is proposed. The signaling scheme for each system is selected from a class of waveforms with nonlinear phase function by optimizing the waveform parameters to minimize interference between the two systems and interference among communications users. Using multi-objective optimization, a trade-off in system performance is demonstrated when selecting waveforms that minimize both system interference and tracking MSE.
ContributorsKota, John S (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Berisha, Visar (Committee member) / Bliss, Daniel (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2016
155050-Thumbnail Image.png
Description
Full-duplex communication has attracted significant attention as it promises to increase the spectral efficiency compared to half-duplex. Multi-hop full-duplex networks add new dimensions and capabilities to cooperative networks by facilitating simultaneous transmission and reception and improving data rates.

When a relay in a multi-hop full-duplex system amplifies and forwards its received

Full-duplex communication has attracted significant attention as it promises to increase the spectral efficiency compared to half-duplex. Multi-hop full-duplex networks add new dimensions and capabilities to cooperative networks by facilitating simultaneous transmission and reception and improving data rates.

When a relay in a multi-hop full-duplex system amplifies and forwards its received signals, due to the presence of self-interference, the input-output relationship is determined by recursive equations. This thesis introduces a signal flow graph approach to solve the problem of finding the input-output relationship of a multi-hop amplify-and-forward full-duplex relaying system using Mason's gain formula. Even when all links have flat fading channels, the residual self-interference component due to imperfect self-interference cancellation at the relays results in an end-to-end effective channel that is an all-pole frequency-selective channel. Also, by assuming the relay channels undergo frequency-selective fading, the outage probability analysis is performed and the performance is compared with the case when the relay channels undergo frequency-flat fading. The outage performance of this system is performed assuming that the destination employs an equalizer or a matched filter.

For the case of a two-hop (single relay) full-duplex amplify-and-forward relaying system, the bounds on the outage probability are derived by assuming that the destination employs a matched filter or a minimum mean squared error decision feedback equalizer. For the case of a three-hop (two-relay) system with frequency-flat relay channels, the outage probability analysis is performed by considering the output SNR of different types of equalizers and matched filter at the destination. Also, the closed-form upper bounds on the output SNR are derived when the destination employs a minimum mean squared error decision feedback equalizer which is used in outage probability analysis. It is seen that for sufficiently high target rates, full-duplex relaying with equalizers is always better than half-duplex relaying in terms of achieving lower outage probability, despite the higher RSI. In contrast, since full-duplex relaying with MF is sensitive to RSI, it is outperformed by half-duplex relaying under strong RSI.
ContributorsSureshbabu, Abhilash (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2016
149361-Thumbnail Image.png
Description
Distributed inference has applications in fields as varied as source localization, evaluation of network quality, and remote monitoring of wildlife habitats. In this dissertation, distributed inference algorithms over multiple-access channels are considered. The performance of these algorithms and the effects of wireless communication channels on the performance are studied. In

Distributed inference has applications in fields as varied as source localization, evaluation of network quality, and remote monitoring of wildlife habitats. In this dissertation, distributed inference algorithms over multiple-access channels are considered. The performance of these algorithms and the effects of wireless communication channels on the performance are studied. In a first class of problems, distributed inference over fading Gaussian multiple-access channels with amplify-and-forward is considered. Sensors observe a phenomenon and transmit their observations using the amplify-and-forward scheme to a fusion center (FC). Distributed estimation is considered with a single antenna at the FC, where the performance is evaluated using the asymptotic variance of the estimator. The loss in performance due to varying assumptions on the limited amounts of channel information at the sensors is quantified. With multiple antennas at the FC, a distributed detection problem is also considered, where the error exponent is used to evaluate performance. It is shown that for zero-mean channels between the sensors and the FC when there is no channel information at the sensors, arbitrarily large gains in the error exponent can be obtained with sufficient increase in the number of antennas at the FC. In stark contrast, when there is channel information at the sensors, the gain in error exponent due to having multiple antennas at the FC is shown to be no more than a factor of 8/π for Rayleigh fading channels between the sensors and the FC, independent of the number of antennas at the FC, or correlation among noise samples across sensors. In a second class of problems, sensor observations are transmitted to the FC using constant-modulus phase modulation over Gaussian multiple-access-channels. The phase modulation scheme allows for constant transmit power and estimation of moments other than the mean with a single transmission from the sensors. Estimators are developed for the mean, variance and signal-to-noise ratio (SNR) of the sensor observations. The performance of these estimators is studied for different distributions of the observations. It is proved that the estimator of the mean is asymptotically efficient if and only if the distribution of the sensor observations is Gaussian.
ContributorsBanavar, Mahesh Krishna (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Duman, Tolga (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2010
187820-Thumbnail Image.png
Description
With the advent of new advanced analysis tools and access to related published data, it is getting more difficult for data owners to suppress private information from published data while still providing useful information. This dual problem of providing useful, accurate information and protecting it at the same time has

With the advent of new advanced analysis tools and access to related published data, it is getting more difficult for data owners to suppress private information from published data while still providing useful information. This dual problem of providing useful, accurate information and protecting it at the same time has been challenging, especially in healthcare. The data owners lack an automated resource that provides layers of protection on a published dataset with validated statistical values for usability. Differential privacy (DP) has gained a lot of attention in the past few years as a solution to the above-mentioned dual problem. DP is defined as a statistical anonymity model that can protect the data from adversarial observation while still providing intended usage. This dissertation introduces a novel DP protection mechanism called Inexact Data Cloning (IDC), which simultaneously protects and preserves information in published data while conveying source data intent. IDC preserves the privacy of the records by converting the raw data records into clonesets. The clonesets then pass through a classifier that removes potential compromising clonesets, filtering only good inexact cloneset. The mechanism of IDC is dependent on a set of privacy protection metrics called differential privacy protection metrics (DPPM), which represents the overall protection level. IDC uses two novel performance values, differential privacy protection score (DPPS) and clone classifier selection percentage (CCSP), to estimate the privacy level of protected data. In support of using IDC as a viable data security product, a software tool chain prototype, differential privacy protection architecture (DPPA), was developed to utilize the IDC. DPPA used the engineering security mechanism of IDC. DPPA is a hub which facilitates a market for data DP security mechanisms. DPPA works by incorporating standalone IDC mechanisms and provides automation, IDC protected published datasets and statistically verified IDC dataset diagnostic report. DPPA is currently doing functional, and operational benchmark processes that quantifies the DP protection of a given published dataset. The DPPA tool was recently used to test a couple of health datasets. The test results further validate the IDC mechanism as being feasible.
Contributorsthomas, zelpha (Author) / Bliss, Daniel W (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Banerjee, Ayan (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2023