Matching Items (2)
Filtering by

Clear all filters

157571-Thumbnail Image.png
Description
Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development.

Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development. This thesis attempts to create a chance-constrained knapsack optimization model, which the breeder can use to make better decisions about seed progression and help reduce the levels of risk in their selections. The model’s objective is to select seed varieties out of a larger pool of varieties and maximize the average yield of the “knapsack” based on meeting some risk criteria. Two models are created for different cases. First is the risk reduction model which seeks to reduce the risk of getting a bad yield but still maximize the total yield. The second model considers the possibility of adverse environmental effects and seeks to mitigate the negative effects it could have on the total yield. In practice, breeders can use these models to better quantify uncertainty in selecting seed varieties
ContributorsOzcan, Ozkan Meric (Author) / Armbruster, Dieter (Thesis advisor) / Gel, Esma (Thesis advisor) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2019
Description
Within recent years, the drive for increased sustainability within large corporations has drastically increased. One critical measure within sustainability is the diversion rate, or the amount of waste diverted from landfills to recycling, repurposing, or reselling. There are a variety of different ways in which a company can improve their

Within recent years, the drive for increased sustainability within large corporations has drastically increased. One critical measure within sustainability is the diversion rate, or the amount of waste diverted from landfills to recycling, repurposing, or reselling. There are a variety of different ways in which a company can improve their diversion rate, such as repurposing paper. A conventional method would be to simply have a recycling bin for collecting all paper, but the concern for large companies then becomes a security issue as confidential papers may not be safe in a traditional recycling bin. Salt River Project (SRP) has tackled this issue by hiring a third-party vendor (TPV) and having all paper placed into designated, secure shredding bins whose content is shredded upon collection and ultimately recycled into new material. However, while this effort is improving their diversion, the question has arisen of how to make the program viable in the long term based on the costs required to sustain it. To tackle this issue, this thesis will focus on creating a methodology and sampling plan to determine the appropriate level of a third-party recycling service required and to guide efficient bin-sizing solutions. This will in turn allow for SRP to understand how much paper waste is being produced and how accurately they are being charged for TPV services.
ContributorsHolladay, Amy E. (Author) / Escobedo, Adolfo (Thesis director) / Kucukozyigit, Ali (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05