Matching Items (34)
Filtering by

Clear all filters

131509-Thumbnail Image.png
Description
This thesis project was conducted to create a practical tool to help micro and small local food enterprises identify potential strategies and sources of finance. Currently, many of these enterprises are unable to obtain the financial capital needed to start-up or maintain operations.

Sources and strategies of finance studied and

This thesis project was conducted to create a practical tool to help micro and small local food enterprises identify potential strategies and sources of finance. Currently, many of these enterprises are unable to obtain the financial capital needed to start-up or maintain operations.

Sources and strategies of finance studied and ultimately included in the tool were Loans, Equity, Membership, Crowdfunding, and Grants. The tool designed was a matrix that takes into account various criteria of the business (e.g. business lifecycle, organizational structure, business performance) and generates a financial plan based on these criteria and how they align with the selected business strategies. After strategies are found, stakeholders can search through an institutional database created in conjunction with the matrix tool to find possible institutional providers of financing that relate to the strategy or strategies found.

The tool has shown promise in identifying sources of finance for micro and small local food enterprises in practical use with hypothetical business cases, however further practical use is necessary to provide further input and revise the tool as needed. Ultimately, the tool will likely become fully user-friendly and stakeholders will not need the assistance of another expert helping them to use it. Finally, despite the promise of the tool itself, the fundamental and underlying problem that many of these businesses face (lack of infrastructure and knowledge) still exists, and while this tool can also help capacity-building efforts towards both those seeking and those providing finance, an institutional attitude adjustment towards social and alternative enterprises is necessary in order to further simplify the process of obtaining finance.
ContributorsDwyer, Robert Francis (Author) / Wiek, Arnim (Thesis director) / Forrest, Nigel (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133187-Thumbnail Image.png
Description
The purpose of this project is to create an affordable and low-environmental impact housing model for high-density urban living. Detailed research was completed to select the Arizonan city of Tempe for the basis of this model such as author's preference and alarming demographic and economic factors. The finalized model will

The purpose of this project is to create an affordable and low-environmental impact housing model for high-density urban living. Detailed research was completed to select the Arizonan city of Tempe for the basis of this model such as author's preference and alarming demographic and economic factors. The finalized model will consist of shipping containers that will be converted into housing. These domiciles are ideal for a maximum of 1-2 occupants. The units will be stacked into communities to accomplish high density. These shipping containers will be used rather than brand new, the community landscape will consist of natural desert landscaping, a recycling program will be offered, and solar panels will be used to power the units. The decision for these features fulfills both the mission of the project and markets to the main demographic group of residents in Tempe, Millennials, who usually place sustainability in high regard. These units are meant to be purchased by the target market and other citizens to increase homeownership rates in Tempe. Their ownership rights will be analogous owning a condo, where they will own the converted shipping container itself, but not the property the unit is placed on. In addition, these units qualify for traditional loans and will appreciate similar to normal housing options. After conceptualizing the idea, various costs were analyzed for construction of the units. A critical component of the project is to receive government grants to fund the venture in order to continue the mission and keep prices of these units low. This model is expandable and could be moved to other cities within the state or potentially other states through future government grant attainment and success with the first installation. These communities will be managed by a company, Shipping Designs, which will be a limited liability company created by the author, Shauna Burgoyne.
ContributorsBurgoyne, Shauna Cheyenne (Author) / Kellso, James (Thesis director) / Dooley, Kevin (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133526-Thumbnail Image.png
Description
This thesis investigates the potential of life cycle analysis for more sustainable sourcing strategies in organizations. Using the example of the College of Lake County (CLC) in Illinois, I study how life-cycle analysis can help to improve the procurement of products and services in higher education. Currently, CLC's purchasing team

This thesis investigates the potential of life cycle analysis for more sustainable sourcing strategies in organizations. Using the example of the College of Lake County (CLC) in Illinois, I study how life-cycle analysis can help to improve the procurement of products and services in higher education. Currently, CLC's purchasing team does not understand how sourcing affects operational and environmental performance. In addition, CLC's purchasing team does not communicate effectively with other departments from a product utilization standpoint. The objective of this research is to analyze CLC's current product procurement process and to assess the feasibility of implementing life cycle analysis tools. Further, I evaluate different life cycle analysis tools and provide recommendations to CLC about the applicability of these tools so that they may be implemented into the university in the future. First, I find that both the procurement and IT department at CLC are not familiar with life-cycle analysis tools and hence, do not know about the life cycle of their processes and services. Second, I identify professional life cycle analysis tools relevant for CLC. Two software options, GaBi and SimaPro, are discussed. Finally, I suggest six steps for a successful implementation of life cycle analysis at CLC: (1) form an interdisciplinary team, (2) analyze demand and collect additional data, (3) conduct a product life cycle analysis using a software tool, (4) define which products to analyze further, (5) conduct life cycle costing analysis with the same software tool, and (6) utilize these results for decisions and delegation of responsibility.
ContributorsGotsch, Rachel Lynne (Author) / Wiedmer, Robert (Thesis director) / Kashiwagi, Jacob (Committee member) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135090-Thumbnail Image.png
Description
The thesis outlines five feasible technologies that can be implemented to assist Arizona State University (ASU) in its attempt to increase its water sustainability practices. After collaborating with internal contacts from ASU's Sustainability department, a plan was initiated to research, inform, and recommend the best technological solution and potential vendor

The thesis outlines five feasible technologies that can be implemented to assist Arizona State University (ASU) in its attempt to increase its water sustainability practices. After collaborating with internal contacts from ASU's Sustainability department, a plan was initiated to research, inform, and recommend the best technological solution and potential vendor for ASU. Information on the vendor is included in the analysis describing the company's history, its service offerings, and application of the technology mentioned using case studies. Potential vendors were contact by phone and additional research was conducted using the each of the company's website to gather more information such a charts and graphs. ASU's current negotiations with its main vendor, Sustainable Water, assisted in establishing benchmarks needed to be able to compare other potential vendors. Each technology was researched extensively using metrics such as energy efficiency, aesthetics, footprint, purification capacity, and odor. The team had difficulties gathering specific data due to the hesitations of companies divulging proprietary information. As much information was gathered to analyze and provide a comparison with each vendor using a ranked and weighted system. Rating the technologies took into considerations the needs of ASU, the offerings of the potential vendor, and the technological capacities and capabilities. The technologies mentioned each had distinct features differing it from one another. However, each technology also had its tradeoffs. Ultimately, it was found that the most feasible, realistic and most aesthetically pleasing solution was Sustainable Water. After careful analysis, it is recommended to continue discussions with Sustainable Water to meet the needs and goals of ASU's water sustainability initiatives.
ContributorsReid, Tatiana (Co-author) / MacDonaldo, Ariane (Co-author) / Printezis, Antonios (Thesis director) / Alberhasky, JoEllen (Committee member) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148124-Thumbnail Image.png
Description

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known for its harmful effects on the environment and the extreme length of time it takes to decompose. According to the International Union for Conservation of Nature (IUCN), almost 8 million tons of plastic end up in the oceans at an annual rate, threatening not only the safety of marine species but also human health. Modern food packaging materials have included a blend of synthetic ingredients, trickling into our daily lives and polluting the air, water, and land. Single-use plastic items slowly degrade into microplastics and can take up to hundreds of years to biodegrade.<br/>Due to COVID-19, restaurants have switched to takeout and delivery options to adapt to the new business environment and guidelines enforced by the Center of Disease Control (CDC) mandated guidelines. Some of these guidelines include: notices encouraging social distancing and mask-wearing, mandated masks for employees, and easy access to sanitary supplies. This cultural shift is motivating restaurants to search for a quick, cheap, and easy fix to adapt to the increased demand of take-out and delivery methods. This increases their plastic consumption of items such as plastic bags/paper bags, styrofoam containers, and beverage cups. Plastic is the most popular takeout material because of its price and durability as well as allowing for limited contamination and easy disposability.<br/>Almost all food products come in packaging and this, more often than not, is single-use. Food is the largest market out of all the packaging industry, maintaining roughly two-thirds of material going to food. The US Environmental Protection Agency reports that almost half of all municipal solid waste is made up of food and food packaging materials. In 2014, over 162 million tons of packaging material waste was generated in the states. This typically contains toxic inks and dyes that leach into groundwater and soil. When degrading, pieces of plastic absorb toxins like PCBs and pesticides, and then each piece will, in turn, release toxic chemicals like Bisphenol-A. Even before being thrown away, it causes negative effects for the environment. The creation of packaging materials uses many resources such as petroleum and chemicals and then releases toxic byproducts. Such byproducts include sludge containing contaminants, greenhouse gases, and heavy metal and particulate matter emissions. Unlike many other industries, plastic manufacturing has actually increased production. Demand has increased and especially in the food industry to keep things sanitary. This increase in production is reflective of the increase in waste. <br/>Although restaurants have implemented their own sustainable initiatives to combat their carbon footprint, the pandemic has unfortunately forced restaurants to digress. For example, Just Salad, a fast-food restaurant chain, incentivized customers with discounted meals to use reusable bowls which saved over 75,000 pounds of plastic per year. However, when the pandemic hit, the company halted the program to pivot towards takeout and delivery. This effect is apparent on an international scale. Singapore was in lock-down for eight weeks and during that time, 1,470 tons of takeout and food delivery plastic waste was thrown out. In addition, the Hong Kong environmental group Greeners Action surveyed 2,000 people in April and the results showed that people are ordering out twice as much as last year, doubling the use of plastic.<br/>However, is this surge of plastic usage necessary in the food industry or are there methods that can be used to reduce the amount of waste production? The COVID-19 pandemic caused a fracture in the food system’s supply chain, involving food, factory, and farm. This thesis will strive to tackle such topics by analyzing the supply chains of the food industry and identify areas for sustainable opportunities. These recommendations will help to identify areas for green improvement.

ContributorsDeng, Aretha (Co-author) / Tao, Adlar (Co-author) / Vargas, Cassandra (Co-author) / Printezis, Antonios (Thesis director) / Konopka, John (Committee member) / Department of Supply Chain Management (Contributor) / School of International Letters and Cultures (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148164-Thumbnail Image.png
Description

Waste pickers are the victims of harsh economic and social factors that have hurt many developing countries and billions of people around the world. Due to the rise of industrialization since the 19th century, waste and disposable resources have been discarded around the world to provide more resources, products, and

Waste pickers are the victims of harsh economic and social factors that have hurt many developing countries and billions of people around the world. Due to the rise of industrialization since the 19th century, waste and disposable resources have been discarded around the world to provide more resources, products, and services to wealthy countries. This has put developing countries in a precarious position where people have had very few economic opportunities besides taking on the role of waste pickers, who not only face physical health consequences due to the work they do but also face exclusion from society due to the negative views of waste pickers. Many people view waste pickers as scavengers and people who survive off of doing dirty work, which creates tensions between waste pickers and others in society. This even leads to many countries outlawing waste picking and has led to the brutal treatment of waste pickers throughout the world and has even led to thousands of waste pickers being killed by anti-waste picker groups and law enforcement organizations in many countries. <br/> Waste pickers are often at the bottom of supply-chains as they take resources that have been used and discarded, and provide them to recyclers, waste management organizations, and others who are able to turn these resources into usable materials again. Waste pickers do not have many opportunities to rise above the situation they are in as waste picking has become the only option for many people who need to provide for themselves and their families. They are not compensated very well for the work they do, which also contributes to the situation where waste pickers are forced into a position of severe health risks, backlash from society and governments, not being able to seek better opportunities due to a lack of earning potential, and not being connected with end-users. Now is the time to create new business models that solve these large problems in our global society and create a sustainable way to ensure that waste pickers are treated properly around the world.

ContributorsKidd, Isabella Joy (Co-author) / Kapps, Jack (Co-author) / Urbina-Bernal, Alejandro (Thesis director) / Byrne, Jared (Committee member) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Morrison School of Agribusiness (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148245-Thumbnail Image.png
Description

As temperatures increase across the United States, some populations are more at risk for heat-related death and illness than others. One of these at-risk demographics is mobile home and trailer park inhabitants, who are disproportionately represented among indoor heat-related deaths (Solís, “Heat, Health”). In this paper, we outline a cost-benefit

As temperatures increase across the United States, some populations are more at risk for heat-related death and illness than others. One of these at-risk demographics is mobile home and trailer park inhabitants, who are disproportionately represented among indoor heat-related deaths (Solís, “Heat, Health”). In this paper, we outline a cost-benefit analysis that was used to calculate the net present economic value of projects related to reducing heat burden on mobile home owners and parks in Maricopa County. We use this model to assess solutions developed by student teams under the Knowledge Exchange for Resilience’s Summer Heat Resilience Challenge. We find that one of the seven solutions has a positive net present value (NPV) even in the lowest effectiveness (10%), while three more solutions have a positive NPV in the mid-level (50%) effectiveness scenario, showcasing their economic viability.

ContributorsRobinson, Jacob (Author) / Solís, Patricia (Thesis director) / Markolf, Samuel (Committee member) / Department of Psychology (Contributor) / Department of Finance (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148278-Thumbnail Image.png
Description

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular economy to reduce the amount of waste generated in shoe creation. We have designed a sandal that accommodates the rapid consumption element of fast fashion with a business model that promotes sustainability through a buy-back method to upcycle and retain our materials.

ContributorsSuresh Kumar, Roshni (Co-author) / Yang, Andrea (Co-author) / Liao, Yuxin (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148061-Thumbnail Image.png
Description

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known for its harmful effects on the environment and the extreme length of time it takes to decompose. According to the International Union for Conservation of Nature (IUCN), almost 8 million tons of plastic end up in the oceans at an annual rate, threatening not only the safety of marine species, but also human health. Modern food packaging materials have included a blend of synthetic ingredients, trickling into our daily lives and polluting the air, water, and land. Single-use plastic items slowly degrade into microplastics and can take up to hundreds of years to biodegrade.<br/>Due to COVID-19, restaurants have switched to takeout and delivery options to adapt to the new business environment and guidelines enforced by the Center of Disease Control (CDC) mandated guidelines.<br/>Some of these guidelines include: notices encouraging social distancing and mask-wearing, mandated masks for employees, and easy access to sanitary supplies.<br/>This cultural shift is motivating restaurants to search for a quick, cheap, and easy fix to adapt to the increased demand of take-out and delivery methods. This increases their plastic consumption of items such as plastic bags/paper bags, styrofoam containers, and beverage cups. Plastic is the most popular takeout material because of its price and durability as well as allowing for limited contamination and easy disposability.<br/>Almost all food products come in packaging and this, more often than not, is single use. Food is the largest market out of all the packaging industry, maintaining roughly two thirds of material going to food. The US Environmental Protection Agency reports that almost half of all municipal solid waste is made up of food and food packaging materials. In 2014, over 162 million tons of packaging material waste was generated in the states. This typically contains toxic inks and dyes that leach into groundwater and soil. When degrading, pieces of plastic absorb toxins like PCBs and pesticides, and then each piece will in turn release toxic chemicals like Bisphenol A. Even before being thrown away, it causes negative effects for the environment. The creation of packaging materials uses many resources such as petroleum and chemicals and then releases toxic byproducts. Such byproducts include sludge containing contaminants, greenhouse gases, and heavy metal and particulate matter emissions. Unlike many other industries, plastic manufacturing has actually increased production. Demand has increased and especially in the food industry to keep things sanitary. This increase in production is reflective of the increase in waste. <br/>Although restaurants have implemented their own sustainable initiatives to combat their carbon footprint, the pandemic has unfortunately forced restaurants to digress. For example, Just Salad, a fast food restaurant chain, incentivized customers with discounted meals to use reusable bowls which saved over 75,000 pounds of plastic per year. However, when the pandemic hit, the company halted the program to pivot towards takeout and delivery. This effect is apparent on an international scale. Singapore was in lock-down for eight weeks and during that time, 1,470 tons of takeout and food delivery plastic waste was thrown out. In addition, the Hong Kong environmental group Greeners Action surveyed 2,000 people in April and the results showed that people are ordering out twice as much as last year, doubling the use of plastic.<br/>However, is this surge of plastic usage necessary in the food industry or are there methods that can be used to reduce the amount of waste production? The COVID-19 pandemic caused a fracture in the food system’s supply chain, involving food, factory, and farm. This thesis will strive to tackle such topics by analyzing the supply chains of the food industry and identify areas for sustainable opportunities. These recommendations will help to identify areas for green improvement.

ContributorsTao, Adlar Z (Co-author) / Vargas, Cassandra (Co-author) / Deng, Aretha (Co-author) / Printezis, Antonios (Thesis director) / Konopka, John (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05