Matching Items (77)
Filtering by

Clear all filters

136500-Thumbnail Image.png
Description
Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.
ContributorsSchrilla, John Paul (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136132-Thumbnail Image.png
Description
Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on

Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on sample exteriors, a 4 mm passivating boundary layer effect was observed, impeding the carbonation process at the center. XRD analysis was used to characterize the extent of carbonation, indicating extremely poor carbonation and therefore CO2 penetration inside the visible boundary. The depth of the passivating layer was found to be independent of both time and choice of aggregate. Less than adequate strength was developed in carbonated trials due to formation of small, weakly-connected crystals, shown with SEM analysis. Additional research, especially in situ analysis with thermogravimetric analysis would be useful to determine the causation of poor carbonation performance. This technology has great potential to substitute for certain Portland cement applications if these issues can be addressed.
ContributorsHermens, Stephen Edward (Author) / Bearat, Hamdallah (Thesis director) / Dai, Lenore (Committee member) / Mobasher, Barzin (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
132444-Thumbnail Image.png
Description
Fashion is individual in its expression. It is also universal. Fashion is a cumulation of different influences and different interpretations. We currently live in a climate divided by race, culture, gender, and so much more. It is so difficult to find common ground on a global platform. Something that stands

Fashion is individual in its expression. It is also universal. Fashion is a cumulation of different influences and different interpretations. We currently live in a climate divided by race, culture, gender, and so much more. It is so difficult to find common ground on a global platform. Something that stands alone is fashion. Fashion is influenced by so many aspects. Of these, aspects that I am interested in are culture and sustainability. When combined with culture, fashion can anchor and have a root to the generations that came before us. When combined with sustainability, we have an anchor to the planet that we share with everyone. The result of fashion is always the same, beautiful art. I want people to see the beauty not only in the art itself, but the differences and similarities that such art provides. We all come from the same world but have different ways of expressing that world. My goal is to show people that they need to acknowledge the differences but can choose to see the similarities of each culture. Additionally, I redesign garments that capture an emotion and a story. Making each piece individual yet serving a greater purpose sustainability wise. I envision the principle of sustainable fashion to be the basis of each piece of clothing. Therefore, for my creative project I am constructing five art pieces representing five cultures that has had a significant influence on my life and personal style. These cultures are those of UAE, Germany, Nepal, Mexico, and Spain. Each of these garments are made from recycled fabric and clothing donated by family and friends. My objective is to display sustainable fashion that has deep cultural influence. Every piece has a story and an emotion attached as well to create a connection with the clothing itself.
ContributorsKreiser, Samantha Miren (Author) / Chhetri, Nalini (Thesis director) / Ellis, Naomi (Committee member) / Dean, W.P. Carey School of Business (Contributor, Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The idea of a packed promenade, crowded with busy shoppers and completely empty of cars may seem like a holdover from rustic 19th century Europe — but many present day examples can be found right here in the United States — in college towns like Madison, WI, big cities like

The idea of a packed promenade, crowded with busy shoppers and completely empty of cars may seem like a holdover from rustic 19th century Europe — but many present day examples can be found right here in the United States — in college towns like Madison, WI, big cities like Denver CO, and lots of places in between. In recent years, proposals to change Mill Ave. here in Tempe have been introduced to modify University Dr. to Rio Salado Pkwy. into just that type of pedestrianized shopping mall, closing it to all automobile traffic outside of emergency vehicles.
As two students who frequent the potentially affected area, we explore the feasibility of such a proposal to continue to grow the downtown Tempe economy. Our research focuses upon several different areas — exploring positive and negative cases of street pedestrianization (whether in Europe, the United States, or other countries), the impact a permanent street closure in Tempe would have both on personal traffic and on the city’s robust public transit system, potential security concerns, opinions of the business community on the proposed change, and the political feasibility of passing the proposal through the Tempe City Council.
ContributorsBaker, Alex Anton (Co-author) / O'Malley, Jessica (Co-author) / King, David (Thesis director) / Kuby, Lauren (Committee member) / Department of Information Systems (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
134704-Thumbnail Image.png
Description
p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult and costly. This research aims to produce p-coumarate directly from renewable and sustainable glucose using a co-culture of Yeast and E. Coli. Methods used in this study include: designing optimal media for mixed-species microbial growth, genetically engineering both strains to build the production pathway with maximum yield, and analyzing the presence of p-Coumarate and its pathway intermediates using High Performance Liquid Chromatography (HPLC). To date, the results of this project include successful integration of C4H activity into the yeast strain BY4741 ∆FDC1, yielding a strain that completely consumed trans-cinnamate (initial concentration of 50 mg/L) and produced ~56 mg/L p-coumarate, a resting cell assay of the co-culture that produced 0.23 mM p-coumarate from an initial L-Phenylalanine concentration of 1.14 mM, and toxicity tests that confirmed the toxicity of trans-cinnamate to yeast for concentrations above ~50 mg/L. The hope for this project is to create a feasible method for producing p-Coumarate sustainably.
ContributorsJohnson, Kaleigh Lynnae (Author) / Nielsen, David (Thesis director) / Thompson, Brian (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
132932-Thumbnail Image.png
Description
College and university campuses can play an important role in a student’s life, and campus outdoor spaces have the ability to positively impact various aspects of student health and well-being. It has long been understood that natural environments can promote health and well being, and in recent years research has

College and university campuses can play an important role in a student’s life, and campus outdoor spaces have the ability to positively impact various aspects of student health and well-being. It has long been understood that natural environments can promote health and well being, and in recent years research has begun to examine the impact of parks and landscapes in urban settings on subjective well-being (SWB). Subjective well-being (aka “happiness”) refers to
one’s self-reported measure of well-being and is thought of as having a high level of positive affect, low level of negative affect, and high degree of life satisfaction (Diener, 1984).

This study was conducted to assess the interrelationships between affective experiences, SWB, and usage of campus outdoor spaces in order to learn how outdoor spaces on the Arizona State University (ASU) Tempe campus can be enhanced to increase SWB and usage. In total, 832 students completed a survey questionnaire 1,140 times for six campus outdoor spaces. The results showed that students experience the greatest amount of happiness in the Secret Garden
and James Turrell ASU Skyspace, relaxation/restoration is the affective experience most strongly related to SWB, and SWB is negatively correlated with frequency of visits but positively link with duration of visits. To improve student happiness and usage of outdoor spaces on campuses, planners and designers should work on increasing the relaxing/restorative qualities of existing
locations, creating new spaces for relaxation/restoration around campus, reducing the perception of crowding and noise in large spaces, increasing fun/excitement by adding stimuli and/or opportunities for activity and entertainment, and adding equipment necessary for students to perform the activities they want. In addition to the ASU Tempe campus, the methodology and
findings of this research could be used to improve outdoor spaces on other college and university campuses and other types of outdoor environments.
ContributorsDavis, Kara (Author) / Cheng, Chingwen (Thesis director) / Cloutier, Scott (Committee member) / School of Sustainability (Contributor) / Dean, W.P. Carey School of Business (Contributor) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133324-Thumbnail Image.png
Description
In the pursuit of sustainable sources of energy that do less harm to the environment, numerous technologies have been developed to reduce carbon emissions in the atmosphere. The implementation of carbon capture and storage systems (CCS) has played a crucial role in reducing CO2 emissions, but depleting storage reserves and

In the pursuit of sustainable sources of energy that do less harm to the environment, numerous technologies have been developed to reduce carbon emissions in the atmosphere. The implementation of carbon capture and storage systems (CCS) has played a crucial role in reducing CO2 emissions, but depleting storage reserves and ever-increasing costs of sequestrating captured CO2 has prompted the idea of utilizing CO2 as soon as it is produced (i.e. carbon capture and utilization, or CCU) and storing any remaining amounts. This project analyzes the cost of implementing a delafossite CuFeO2 backed CCU system for the average US coal-burning power plant with respect to current amounts of CO2 captured. Beyond comparing annual maintenance costs of CCU and CCS systems, the project extends previous work done on direct CO2 conversion to liquid hydrocarbons by providing a protocol for determining how the presence of NO affects the products formed during pure CO2 hydrogenation. Overall, the goal is to gauge the applicability of CCU systems to power plants with a sub 10-year lifespan left, whilst observing the potential revenue that can be potentially generated from CCU implementation. Under current energy costs ($0.12 per kWh), a delafossite CuFeO2 supported CCU system would generate over $729 thousand in profit for an average sized supercritical pulverized coal power (SCPC) plants selling diesel fuel created from CO2 hydrogenation. This amount far exceeds the cost of storing captured CO2 and suggests that CCU systems can be profitable for SCPC power plants that intend to burn coal until 2025.
ContributorsShongwe, Thembelihle Wakhile (Author) / Andino, Jean (Thesis director) / Otsengue, Thonya (Committee member) / Economics Program in CLAS (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133048-Thumbnail Image.png
Description
As the sustainability issue of solid waste management magnifies worldwide, organizations are considering making their offices or operations Zero Waste, but many do not understand how or where to start. With the goal of contributing insights and advice to future designers and managers of Zero Waste programs, this thesis explores

As the sustainability issue of solid waste management magnifies worldwide, organizations are considering making their offices or operations Zero Waste, but many do not understand how or where to start. With the goal of contributing insights and advice to future designers and managers of Zero Waste programs, this thesis explores notable attributes of existing Zero Waste programs through case interviews and documents the researcher’s own journey in designing and executing a Zero Waste program at the Sprouts Farmers Market headquarters. The result is a detailed account that reveals how the Sprouts program was executed, how it could be improved, and which practices future Zero Waste program managers should use to maximize the success of their program. These practices include building personal and trusting relationships with the network of people involved; remaining flexible, patient and passionate; conducting thorough quantitative research on the proposed changes; and tailoring communication to effectively motivate behavior change.
ContributorsPowell, Emily Eva (Author) / Behravesh, Shirley-Ann (Thesis director) / Ferrin, Erika (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134209-Thumbnail Image.png
Description
Polymer modified tuning fork-based sensors were fabricated to assure reproducibility. The effect of system valve switching on the modified tuning fork-based sensors was studied at the different temperature. The response to Xylene gas sample on stabilized modified tuning fork-based sensors with temperature was defined while learning about the key analytical

Polymer modified tuning fork-based sensors were fabricated to assure reproducibility. The effect of system valve switching on the modified tuning fork-based sensors was studied at the different temperature. The response to Xylene gas sample on stabilized modified tuning fork-based sensors with temperature was defined while learning about the key analytical performance for chemical sensors to be used in the real-world application.
ContributorsRohit, Riddhi S (Author) / Forzani, Erica (Thesis director) / Tsow, Francis (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05