Matching Items (29)
Filtering by

Clear all filters

136656-Thumbnail Image.png
Description
The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing

The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing shelter and spaces for cooking, sleeping, eating, and sanitation. The project proved to be very challenging from the start. First, the livable space is extremely small, being only tall enough for one to sit up straight. The truck and camper shell were both borrowed items, so no modifications were allowed for either, e.g. drilling holes for mounting. The idea was to create a system that could be easily removed, transforming it from a camper to a utility truck. The systems developed for the living environment would be modular and transformative so to accommodate for different necessities when packing. The goal was to create a low-water system with sustainability in mind. Insulating the space was the largest challenge and the most rewarding, using body heat to warm the space and insulate from the elements. Comfort systems were made of high density foam cushions in sections to allow folding and stacking for different functions (sleeping, lounging, and sitting). Sanitation is necessary for healthy living and regular human function. A composting toilet was used for the design, lending to low-water usage and is sustainable over time. Saw dust would be necessary for its function, but upon composting, the unit will generate sufficient amounts of heat to act as a space heater. Showering serves the functions of exfoliation and ridding of bacteria, both of which bath wipes can accomplish, limiting massive volumes of water storage and waste. Storage systems were also designed for modularity. Hooks were installed the length of the bed for hanging or securing items as necessary. Some are available for hanging bags. A cabinetry rail also runs the length of the bed to allow movement of hard storage to accommodate different scenarios. The cooking method is called "sous-vide", a method of cooking food in air-tight bags submerged in hot water. The water is reusable for cooking and no dishes are necessary for serving. Overall, the prototype fulfilled its function as a full living environment with few improvements necessary for future use.
ContributorsLimsirichai, Pimwadee (Author) / Foy, Joseph (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-12
137557-Thumbnail Image.png
DescriptionExplore the implications that both sustainability and branding have on the built environment in order to develop a health an wellness center that promotes a balanced lifestyle for two targets users, which are of entirely different demographics.
ContributorsRachford, Paris Kristen (Author) / Shraiky, James (Thesis director) / Brandt, Beverly (Committee member) / Thomson, Eric (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor)
Created2013-05
137196-Thumbnail Image.png
Description
As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles

As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles can generate small amounts of electricity, the idea behind this project was to expand energy generation into the more common weight lifting side of exercising. The method for solving this problem was to find the average amount of power generated per user on a Smith machine and determine how much power was available from an accompanying energy generator. The generator consists of three phases: a copper coil and magnet generator, a full wave bridge rectifying circuit and a rheostat. These three phases working together formed a fully functioning controllable generator. The resulting issue with the kinetic energy generator was that the system was too inefficient to serve as a viable system for electricity generation. The electrical production of the generator only saved about 2 cents per year based on current Arizona electricity rates. In the end it was determined that the project was not a sustainable energy generation system and did not warrant further experimentation.
ContributorsO'Halloran, Ryan James (Author) / Middleton, James (Thesis director) / Hinrichs, Richard (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / The Design School (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
132906-Thumbnail Image.png
Description
Plastics make up a large proportion of solid waste that ends up in landfills and pollute ecosystems, and do not readily decompose. Composites from fungus mycelium are a recent and promising alternative to replace plastics. Mycelium is the root-like fibers from fungi that grow underground. When fed with woody biomass,

Plastics make up a large proportion of solid waste that ends up in landfills and pollute ecosystems, and do not readily decompose. Composites from fungus mycelium are a recent and promising alternative to replace plastics. Mycelium is the root-like fibers from fungi that grow underground. When fed with woody biomass, the mycelium becomes a dense mass. From there, the mycelium is placed in mold to take its shape and grow. Once the growth process is done, the mycelium is baked to end the growth, thus making a mycelium brick. The woody biomass fed into the mycelium can include materials such as sawdust and pistachio shells, which are all cheap feedstock. In comparison to plastics, mycelium bricks are mostly biodegradable and eco-friendly. Mycelium bricks are resistant to water, fire, and mold and are also lightweight, sustainable, and affordable. Mycelium based materials are a viable option to replace less eco-friendly materials. This project aims to explore growth factors of mycelium and incorporate nanomaterials into mycelium bricks to achieve strong and sustainable materials, specifically for packaging materials. The purpose of integrating nanomaterials into mycelium bricks is to add further functionality such as conductivity, and to enhance properties such as mechanical strength.
ContributorsWong, Cindy (Author) / Wang, Qing Hua (Thesis director) / Green, Alexander (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132932-Thumbnail Image.png
Description
College and university campuses can play an important role in a student’s life, and campus outdoor spaces have the ability to positively impact various aspects of student health and well-being. It has long been understood that natural environments can promote health and well being, and in recent years research has

College and university campuses can play an important role in a student’s life, and campus outdoor spaces have the ability to positively impact various aspects of student health and well-being. It has long been understood that natural environments can promote health and well being, and in recent years research has begun to examine the impact of parks and landscapes in urban settings on subjective well-being (SWB). Subjective well-being (aka “happiness”) refers to
one’s self-reported measure of well-being and is thought of as having a high level of positive affect, low level of negative affect, and high degree of life satisfaction (Diener, 1984).

This study was conducted to assess the interrelationships between affective experiences, SWB, and usage of campus outdoor spaces in order to learn how outdoor spaces on the Arizona State University (ASU) Tempe campus can be enhanced to increase SWB and usage. In total, 832 students completed a survey questionnaire 1,140 times for six campus outdoor spaces. The results showed that students experience the greatest amount of happiness in the Secret Garden
and James Turrell ASU Skyspace, relaxation/restoration is the affective experience most strongly related to SWB, and SWB is negatively correlated with frequency of visits but positively link with duration of visits. To improve student happiness and usage of outdoor spaces on campuses, planners and designers should work on increasing the relaxing/restorative qualities of existing
locations, creating new spaces for relaxation/restoration around campus, reducing the perception of crowding and noise in large spaces, increasing fun/excitement by adding stimuli and/or opportunities for activity and entertainment, and adding equipment necessary for students to perform the activities they want. In addition to the ASU Tempe campus, the methodology and
findings of this research could be used to improve outdoor spaces on other college and university campuses and other types of outdoor environments.
ContributorsDavis, Kara (Author) / Cheng, Chingwen (Thesis director) / Cloutier, Scott (Committee member) / School of Sustainability (Contributor) / Dean, W.P. Carey School of Business (Contributor) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133269-Thumbnail Image.png
Description
The trends of products made by today’s companies follow a traditional linear economy where materials for products and services are taken, made, and then used until they are disposed of. In this model cheap materials are relied on in large amounts and our current rate of usage is unsustainable. Pollution

The trends of products made by today’s companies follow a traditional linear economy where materials for products and services are taken, made, and then used until they are disposed of. In this model cheap materials are relied on in large amounts and our current rate of usage is unsustainable. Pollution and climate change are effects of this linear economy, and in order to secure a sustainable future for life on this planet, this model is not fit. A circular business model is the future for companies and products. Circular design and biomimicry are at the forefront of this transition. In conjuncture with the InnovationSpace program, I have developed a product for, and sponsored by, Adidas. The product utilizes a circular business model and a sustainable product ecosystem after using biomimicry as a tool for inspiration. The project was driven by this primary research question presented by Adidas: How can we embrace a true circular economy with far more reuse and recycling incorporated, while ensuring that all products travel from factory to foot in a more sustainable way while providing an engaging consumer experience? The goal
of this project was to generate solutions that can be applied to a broad range of products at Adidas.
The product developed is called Neomod, a modular shoe system. People buy shoes both for fashion and function, with the average American owning nineteen pairs. However, countless numbers of partially worn shoes end up in landfills because the materials they are made of are difficult to separate and replace. This is why we designed Neomod; a modular shoe made with interchangeable parts. It makes recycling shoes simpler, but at the same time, provides users with a variety of styles to mix and match to fit their lifestyle. Neomod’s goal is to minimize the amount of waste created and allows all parts of the shoe to be used until its end of life. As consumers buy, recycle, and reuse Neomod shoes, they will help the world work towards a more circular economy.
ContributorsReniewicki, Johnathan Robert (Author) / Sanft, Alfred (Thesis director) / Boradkar, Prasad (Committee member) / The Design School (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134262-Thumbnail Image.png
Description
Humans are undeniably a part of nature. Without Earth's and her resources, we cease to exist. However, in recent years society has lacked the foresight or possibly care to understand the impact of our actions both on the planet and ourselves. Resources that industrialized societies are based on are dwindling

Humans are undeniably a part of nature. Without Earth's and her resources, we cease to exist. However, in recent years society has lacked the foresight or possibly care to understand the impact of our actions both on the planet and ourselves. Resources that industrialized societies are based on are dwindling in reserves and the impact of our actions in getting such resources has been largely harmful. In order to change cycles of overexertion both in our selves and the planet, we must change the ways we think. I propose that humans, very much like the Earth, have limited resources and need to be more mindful in our choices. Wellness and sustainability are two branches of sustaining a larger system and our collective future. On an individual scale, wellness is sustaining our individual resources (i.e. time, energy, thoughts), and can be aided through simple practices to encourage healthy patterns and processes. Sustainability in terms of the planet is sustaining our common resources. This requires a change in our individual selves as well as cooperation to change the larger systems that we are parts of. I separated wellness into three components, core values, positivity, and time management. Sustainability is separated into lifestyle, systems thinking, and learning from life. For each of the six components, I briefly describe their importance and benefits.
ContributorsShamas, Ariel Judith (Author) / Sanft, Al (Thesis director) / Heywood, William (Committee member) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Torch is a smart bulb and family of fixtures that encourages users to carry their light with them. This product system is designed to offer an alternative to our current lighting systems while living within existing home lighting infrastructure. Torch is designed for people who live in small spaces. Torch

Torch is a smart bulb and family of fixtures that encourages users to carry their light with them. This product system is designed to offer an alternative to our current lighting systems while living within existing home lighting infrastructure. Torch is designed for people who live in small spaces. Torch appeals to people who want to live a simpler life with fewer products and better interactions. Torch creates rituals that are inspired by the past. While Torch is designed to be the only light source that one uses. This type of system may not fit into everyone's lives or living spaces. In that case, Torch can be used together with one's existing home lighting. Torch allows users to live with their existing lighting while having a personal smart lighting system. Torch is a sustainable smart bulb that offers an alternative to the excessive smart bulb systems that are on the market from companies like Samsung, Philips, and IKEA. Torch is for people who want the benefits of a smart bulb without having to invest in an expensive system. Torch is a family of products that work together to provide a sustainable, affordable, and personal smart lighting system.
ContributorsBrown, Yannez Ray (Author) / Bacalzo, Dean (Thesis director) / Feil, Magnus (Committee member) / McDermott, Lauren (Committee member) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133776-Thumbnail Image.png
Description
As the move towards sustainable urbanism grows, understanding how the city has previously been envisioned and designed will be useful to moving forward. This work examines the legacy of urban design theories, what these theories have implied about what the city should be, and their sustainability consequences. Noticing three prominent

As the move towards sustainable urbanism grows, understanding how the city has previously been envisioned and designed will be useful to moving forward. This work examines the legacy of urban design theories, what these theories have implied about what the city should be, and their sustainability consequences. Noticing three prominent urban design visions of the city, the technological city (as proposed in 1922 by Le Corbusier's Ville contemporaine and later in 1933 by his Ville Radieuse (The Radiant City), and in 1935 by Frank Lloyd Wright's' Broadacre City), the social city (as explored in 1961 by Jane Jacobs and in 1976 by Edward Relph of the University of Chicago), and the ecological city (as expounded upon in 1924 by both Lewis Mumford and in 1969 by Ian McHarg), I have newly applied the social-ecological-technical systems framework (SETS) to help classify and analyze these urban design theories and how they have mixed to create hybrid perspectives in more recent urban design theory. Lastly, I have proposed an urban design theory that envisions the sustainable city as an ongoing process. Hopefully, this vision that will hopefully be useful to the future of sustainable development in cities, as will a more organized understanding of urban design theories and their sustainability outcomes.
ContributorsWeber, Martha Stewart (Author) / Coseo, Paul (Thesis director) / Larson, Kelli (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / The Design School (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133233-Thumbnail Image.png
Description
The suburbs provoke a deeply polarized reaction, more so than most other components of the urban landscape. Those who live in the suburbs often love them for their quietude and their spaciousness, even while urban designers lament suburban sprawl. Regardless, suburbs are deeply entrenched in patterns of American urban land

The suburbs provoke a deeply polarized reaction, more so than most other components of the urban landscape. Those who live in the suburbs often love them for their quietude and their spaciousness, even while urban designers lament suburban sprawl. Regardless, suburbs are deeply entrenched in patterns of American urban land use, so an evolution to more sustainable land use will require incremental changes to suburban landscapes. The purpose of this project is twofold: one, to design a transition to a more sustainable landscape for an HOA in Gilbert, Arizona; and two, to abstract the process of designing this transition so that it can be applied on a larger scale.
ContributorsRonczy, Patricia Sophia (Author) / Coseo, Paul (Thesis director) / Hargrove, Allyce (Committee member) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05