Matching Items (31)
Filtering by

Clear all filters

152225-Thumbnail Image.png
Description
The dynamics of urban water use are characterized by spatial and temporal variability that is influenced by associated factors at different scales. Thus it is important to capture the relationship between urban water use and its determinants in a spatio-temporal framework in order to enhance understanding and management of urban

The dynamics of urban water use are characterized by spatial and temporal variability that is influenced by associated factors at different scales. Thus it is important to capture the relationship between urban water use and its determinants in a spatio-temporal framework in order to enhance understanding and management of urban water demand. This dissertation aims to contribute to understanding the spatio-temporal relationships between single-family residential (SFR) water use and its determinants in a desert city. The dissertation has three distinct papers to support this goal. In the first paper, I demonstrate that aggregated scale data can be reliably used to study the relationship between SFR water use and its determinants without leading to significant ecological fallacy. The usability of aggregated scale data facilitates scientific inquiry about SFR water use with more available aggregated scale data. The second paper advances understanding of the relationship between SFR water use and its associated factors by accounting for the spatial and temporal dependence in a panel data setting. The third paper of this dissertation studies the historical contingency, spatial heterogeneity, and spatial connectivity in the relationship of SFR water use and its determinants by comparing three different regression models. This dissertation demonstrates the importance and necessity of incorporating spatio-temporal components, such as scale, dependence, and heterogeneity, into SFR water use research. Spatial statistical models should be used to understand the effects of associated factors on water use and test the effectiveness of certain management policies since spatial effects probably will significantly influence the estimates if only non-spatial statistical models are used. Urban water demand management should pay attention to the spatial heterogeneity in predicting the future water demand to achieve more accurate estimates, and spatial statistical models provide a promising method to do this job.
ContributorsOuyang, Yun (Author) / Wentz, Elizabeth (Thesis advisor) / Ruddell, Benjamin (Thesis advisor) / Harlan, Sharon (Committee member) / Janssen, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
156717-Thumbnail Image.png
Description
Electricity infrastructure vulnerabilities were assessed for future heat waves due to climate change. Critical processes and component relationships were identified and characterized with consideration for the terminal event of service outages, including cascading failures in transmission-level components that can result in blackouts. The most critical dependency identified was the increase

Electricity infrastructure vulnerabilities were assessed for future heat waves due to climate change. Critical processes and component relationships were identified and characterized with consideration for the terminal event of service outages, including cascading failures in transmission-level components that can result in blackouts. The most critical dependency identified was the increase in peak electricity demand with higher air temperatures. Historical and future air temperatures were characterized within and across Los Angeles County, California (LAC) and Maricopa County (Phoenix), Arizona. LAC was identified as more vulnerable to heat waves than Phoenix due to a wider distribution of historical temperatures. Two approaches were developed to estimate peak demand based on air temperatures, a top-down statistical model and bottom-up spatial building energy model. Both approaches yielded similar results, in that peak demand should increase sub-linearly at temperatures above 40°C (104 °F) due to saturation in the coincidence of air conditioning (AC) duty cycles. Spatial projections for peak demand were developed for LAC to 2060 considering potential changes in population, building type, building efficiency, AC penetration, appliance efficiency, and air temperatures due climate change. These projections were spatially allocated to delivery system components (generation, transmission lines, and substations) to consider their vulnerability in terms of thermal de-rated capacity and weather adjusted load factor (load divided by capacity). Peak hour electricity demand was projected to increase in residential and commercial sectors by 0.2–6.5 GW (2–51%) by 2060. All grid components, except those near Santa Monica Beach, were projected to experience 2–20% capacity loss due to air temperatures exceeding 40 °C (104 °F). Based on scenario projections, and substation load factors for Southern California Edison (SCE), SCE will require 848—6,724 MW (4-32%) of additional substation capacity or peak shaving in its LAC service territories by 2060 to meet additional demand associated with population growth projections.
ContributorsBurillo, Daniel (Author) / Chester, Mikhail V (Thesis advisor) / Ruddell, Benjamin (Committee member) / Johnson, Nathan (Committee member) / Arizona State University (Publisher)
Created2018
136800-Thumbnail Image.png
Description
In this project, I investigated the ecosystem services, or lack thereof, that landscape designs created in terms of microclimate modification at 11 residential homes throughout the Phoenix Metro Area. I also created an article for the homeowners who participated, explaining what I did and how they could apply my research.

In this project, I investigated the ecosystem services, or lack thereof, that landscape designs created in terms of microclimate modification at 11 residential homes throughout the Phoenix Metro Area. I also created an article for the homeowners who participated, explaining what I did and how they could apply my research. My research question was how a person can achieve a comfortable outdoor climate in their yard without over-using scarce water resources. I hypothesized that there would be a negative correlation between the maximum air temperature and the percent shade in each yard, regardless of the percent grass. I analyzed the data I collected using the program, R, and discovered that my hypothesis was supported for the month of July. These results are in line with previous studies on the subject and can help homeowners make informed decisions about the effects their landscaping choices might have.
ContributorsBarton, Erin Michaela (Author) / Hall, Sharon (Thesis director) / Ruddell, Benjamin (Committee member) / Spielmann, Katherine (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2014-05
136688-Thumbnail Image.png
Description
As an important part of the movement for local and sustainable food in our cities, urban farming has the potential to actively involve urban dwellers in environmental, social, and economic issues of a global scale. When assessed according to a three-pillar model of sustainability, it can offer solutions to many

As an important part of the movement for local and sustainable food in our cities, urban farming has the potential to actively involve urban dwellers in environmental, social, and economic issues of a global scale. When assessed according to a three-pillar model of sustainability, it can offer solutions to many of the major problems associated with the industrial food model that currently dominates the United States market. If implemented on a larger scale in the Phoenix metropolitan area, urban farming could improve overall environmental conditions, stimulate the local economy, and help solve food access and inequality issues. Through interviews with both amateur and established local urban farmers, this thesis attempts to identify and analyze some of the main barriers to the widespread participation in and incorporation of urban agriculture in the Phoenix Valley. Problems encountered by newcomers to the practice are compared with the experiences of more successful farmers to assess which barriers may be circumvented with proper knowledge and experience and which barriers specific to the Phoenix region may require greater structural changes.
ContributorsRay, Emily Catherine (Author) / Puleo, Thomas (Thesis director) / Peterson, Greg (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Politics and Global Studies (Contributor)
Created2014-12
136309-Thumbnail Image.png
Description
Although sustainability as a concept and a science has been around for quite some time, it has only recently come into the common vernacular of citizens around the world. While there are a number of arguments that have been and can be made about the role of sustainability in developing

Although sustainability as a concept and a science has been around for quite some time, it has only recently come into the common vernacular of citizens around the world. While there are a number of arguments that have been and can be made about the role of sustainability in developing countries, it can be said with certainty that sustainability education, especially at the pre-university level, is commonly neglected even in countries that have sustainability initiatives elsewhere in their systems. Education is an important part of development in any country, and sustainability education is critical to raising generations who are more aware of the connections in the world around them. Informal education, or education that takes place outside of a formal classroom, can provide an especially important platform for sustainability ideas. These factors take on unique characteristics within the environment of a small island with noble sustainability goals but limited resources and an economy that includes a significant domestic goat population. After providing basic background on sustainability and the nature of the educational process within the environment of the small island-nation of Grenada, I discuss the importance of informal education and follow my path with a local non-profit in Grenada leading to the development of a locally-relevant sustainability curriculum for implementation in a K-6 school.
ContributorsMelkonoff, Natalie Anne (Author) / Eder, James (Thesis director) / BurnSilver, Shauna (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137411-Thumbnail Image.png
Description
Generation Green is a multimedia website illustrating sustainability for the Millennial generation. This is a creative thesis project for Arizona State University's Barrett, The Honors College. Within the site, there are resources, photo stories, videos, a mini-documentary, a stop-motion story and infographics that feature Millennials who are living greener lives.

Generation Green is a multimedia website illustrating sustainability for the Millennial generation. This is a creative thesis project for Arizona State University's Barrett, The Honors College. Within the site, there are resources, photo stories, videos, a mini-documentary, a stop-motion story and infographics that feature Millennials who are living greener lives. Generation Green brings understanding and clarity to sustainability through the voices of today's generation. Visit the website at: generation-green.com/thesis_website or generation-green.com
ContributorsHavir, Aiyana Cole (Co-author) / Stein, Jake (Co-author) / Stein, Jay (Thesis director) / Dodge, Nancie (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor)
Created2013-12
137162-Thumbnail Image.png
Description
Consumption of seafood poses a substantial threat to global biodiversity. Chemical contamination found in both wild-caught and farmed seafood also presents significant health risks to consumers. Flame retardants, used in upholstery, plastics, clothing, and other products to reduce fire danger, are of particular concern as they are commonly found in

Consumption of seafood poses a substantial threat to global biodiversity. Chemical contamination found in both wild-caught and farmed seafood also presents significant health risks to consumers. Flame retardants, used in upholstery, plastics, clothing, and other products to reduce fire danger, are of particular concern as they are commonly found in the marine environment and permeate the tissues of fish that are sold for consumption via multiple pathways. By summarizing various metrics of sustainability and the mercury content in consumed species of fish and shellfish, researchers have found that high levels of chemical contamination was linked with lesser fishery sustainability. I conducted a literature review of flame retardant content in seafood to further compare contamination and sustainability in addition to the initial analysis with mercury. My review suggests that the widespread issue of fishery collapse could be alleviated by demonstrating to stakeholders that many unsustainable fish stocks are mutually disadvantageous for both human consumers and the environment. Future research should address the need for the collection of data that better represent actual global contaminant concentrations in seafood.
ContributorsNoziglia, Andrea Joyce (Author) / Gerber, Leah (Thesis director) / Smith, Andrew (Committee member) / Pratt, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05
Description
Over the past two decades, the fashion industry has evolved to both create and respond to the consumer's demand for fast fashion, the industry of inexpensive clothing produced at high rates to respond to changing consumer trends. As fast fashion grew in popularity, the new standard of the industry

Over the past two decades, the fashion industry has evolved to both create and respond to the consumer's demand for fast fashion, the industry of inexpensive clothing produced at high rates to respond to changing consumer trends. As fast fashion grew in popularity, the new standard of the industry was to create and manufacture every other week, producing continual new trends for a market designed for continual consumption. As the garments being produced were made for short life-spans, textile waste began to grow and the fashion industry was named the second largest pollutant in the world next to oil. Coming out of a market saturated with clothing, a new trend focused around sustainability and reuse has emerged: the resale market. With increased awareness for sustainability, circular fashion business models have emerged from a more linear and disposable supply chain. By focusing on environmental, social, and financial aspects of a supply chain, otherwise known as the triple bottom line, we discuss how second-hand shopping should be managed to satisfy customer shopping expectations.
The creative project of this thesis showcases various wardrobes that have solely been purchased second-hand. The purpose of the creative presentation is to show that no matter one’s style preference, occupation, or age, second hand shopping can appeal to every type of customer. Second hand shopping is not only for “thrifty” millennials, it it for everyone, and can encompass anyone’s clothing needs.
ContributorsToomb, Sophia Mikaela (Author) / Sewell, Dennita (Thesis director) / Wiedmer, Robert (Committee member) / Department of Supply Chain Management (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134835-Thumbnail Image.png
Description
Sustainability is intrinsically interdisciplinary, but the implementation of nontraditional pedagogy in this area is in its infancy. I aim to show that music can be a model to demonstrate the protean systems that consistently involve each of us. The connection between systems thinking and musical improvisation is evident in musical

Sustainability is intrinsically interdisciplinary, but the implementation of nontraditional pedagogy in this area is in its infancy. I aim to show that music can be a model to demonstrate the protean systems that consistently involve each of us. The connection between systems thinking and musical improvisation is evident in musical improvisation ensembles; it is a system unto itself with individual players connected through their musical composition. Musical improvisation allows the players to learn about systems and system behaviors. Such ability to identify and understand the underlying dynamics involved in complex social-ecological systems is fundamental to taking advantage of leverage points and working towards a sustainable future. I use music and musical improvisation to demonstrate the three concept groups of the systems thinking competency: 1) Variables, structures and functions 2) Resilience, self-organization and hierarchy and 3) Scales and domains. These parts constitute complex systems and are made easier with the analogy of music that provides a more representative language for discussing them in an intuitive way. Furthermore, improvisation activities provide a method and space for these future practitioners to rehearse working with systems. From accepting the nature of systems, one is accepting of their role in the system, which enables them to make changes. Musical improvisation is a valuable method to systems thinking because it requires future practitioners to engage in mindfulness, because it demands remaining in an intuitive stance so to be able to respond (not react) thoughtfully. My thesis will explore how the practice of musical improvisation can enhance the understanding of the three systems thinking content groups and to argue that such practice is unique and necessary as it provides opportunities to rehearse being effective change agents.
ContributorsEller, Maria Sara (Author) / Jianguo, Wu (Thesis director) / Kaplan, Robert (Committee member) / School of Sustainability (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
153722-Thumbnail Image.png
Description
Alfalfa is a major feed crop widely cultivated in the United States. It is the fourth largest crop in acreage in the US after corn, soybean, and all types of wheat. As of 2003, about 48% of alfalfa was produced in the western US states where alfalfa ranks first, second,

Alfalfa is a major feed crop widely cultivated in the United States. It is the fourth largest crop in acreage in the US after corn, soybean, and all types of wheat. As of 2003, about 48% of alfalfa was produced in the western US states where alfalfa ranks first, second, or third in crop acreage. Considering that the western US is historically water-scarce and alfalfa is a water-intensive crop, it creates a concern about exacerbating the current water crisis in the US west. Furthermore, the recent increased export of alfalfa from the western US states to China and the United Arab Emirates has fueled the debate over the virtual water content embedded in the crop. In this study, I analyzed changes of cropland systems under the three basic scenarios, using a stylized model with a combination of dynamical, hydrological, and economic elements. The three scenarios are 1) international demands for alfalfa continue to grow (or at least to stay high), 2) deficit irrigation is widely imposed in the dry region, and 3) long-term droughts persist or intensify reducing precipitation. The results of this study sheds light on how distribution of crop areas responds to climatic, economic, and institutional conditions. First, international markets, albeit small compared to domestic markets, provide economic opportunities to increase alfalfa acreage in the dry region. Second, potential water savings from mid-summer deficit irrigation can be used to expand alfalfa production in the dry region. Third, as water becomes scarce, farmers more quickly switch to crops that make more economic use of the limited water.
ContributorsKim, Booyoung (Author) / Muneepeerakul, Rachata (Thesis advisor) / Ruddell, Benjamin (Committee member) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2015