Matching Items (52)
Filtering by

Clear all filters

150749-Thumbnail Image.png
Description
Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients,

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.
ContributorsNoonan, Kathryn Alexander (Author) / Hartnett, Hilairy (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Shock, Everett (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
157423-Thumbnail Image.png
Description
Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth.

Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth. This study drew upon localized rain gauge data and four data-sets of cover-line and biomass data to estimate ANPP and to determine annual precipitation (PPT). I measured soil depth to caliche and texture by layer of 112 plots across the four landscape units for which estimation of ANPP were available. A pedotransfer function was used to estimate AWHC from soil depth increments to depth of caliche measurements and texture analysis. These data were analyzed using simple and multivariate regression to test the effect of annual precipitation and available water holding capacity on aboveground net primary production. Soil texture remained constant among all plots (sandy loam) and depth to caliche varied from 15.16 cm to 189 cm. AWHC and the interaction term (PPT*AWHC) were insignificant (p=0.142, p=0.838) and annual PPT accounted for 18.4% of the variation in ANPP. The y-intercept was significantly different for ANPP ~ annual PPT when considering AWHC values either above or below 3 cm. Shrub ANPP was insensitive to precipitation regardless of AWHC (R2=-0.012, R2=0.014). Results from this study indicate that a model incorporating annual PPT and AWHC may not serve as a good predictor for ANPP at a site level where there is little variation in soil texture.
ContributorsWagner, Svenja K (Author) / Sala, Osvaldo E. (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Peters, Debra (Committee member) / Arizona State University (Publisher)
Created2019
136800-Thumbnail Image.png
Description
In this project, I investigated the ecosystem services, or lack thereof, that landscape designs created in terms of microclimate modification at 11 residential homes throughout the Phoenix Metro Area. I also created an article for the homeowners who participated, explaining what I did and how they could apply my research.

In this project, I investigated the ecosystem services, or lack thereof, that landscape designs created in terms of microclimate modification at 11 residential homes throughout the Phoenix Metro Area. I also created an article for the homeowners who participated, explaining what I did and how they could apply my research. My research question was how a person can achieve a comfortable outdoor climate in their yard without over-using scarce water resources. I hypothesized that there would be a negative correlation between the maximum air temperature and the percent shade in each yard, regardless of the percent grass. I analyzed the data I collected using the program, R, and discovered that my hypothesis was supported for the month of July. These results are in line with previous studies on the subject and can help homeowners make informed decisions about the effects their landscaping choices might have.
ContributorsBarton, Erin Michaela (Author) / Hall, Sharon (Thesis director) / Ruddell, Benjamin (Committee member) / Spielmann, Katherine (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2014-05
134888-Thumbnail Image.png
Description
The Prosopis genus of trees, also known as mesquites, are uniquely equipped to allow for an agroforestry regime in which crops can be grown beneath the canopy of the tree. Mesquites have the ability to redistribute water moisture in such a way that allows plants under the canopy to use

The Prosopis genus of trees, also known as mesquites, are uniquely equipped to allow for an agroforestry regime in which crops can be grown beneath the canopy of the tree. Mesquites have the ability to redistribute water moisture in such a way that allows plants under the canopy to use water that has been brought up by the roots of mesquite trees. This means that there is a potential for food crops to be grown under the trees without using additional irrigation measures. This could be used where access to water is limited or for a sustainability-minded farmer who is trying to reduce water inputs in an arid environment. Mesquite trees produce a variety of products, including lumber and bean pods that can be ground down into an edible flour. Both products demand a high price in the marketplace and are produced in addition to the crops that can potentially be grown beneath the mesquite tree. In order to determine whether or not it is possible to grow crops under mesquite trees, I reviewed a wide range of literature regarding hydraulic redistribution, mesquite trees in general, and what plants might be best suited for growing beneath a mesquite. The list of plants was narrowed down to four crops that seemed most likely to survive in shaded, low water conditions in a hot environment. There has not been any research done on crops growing beneath mesquite trees, so the next step for research would be to experiment with each of the crops to determine how well each species can adapt to the specified conditions.
ContributorsMesser, Luke Winston (Author) / Eakin, Hallie (Thesis director) / Hall, Sharon (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
152115-Thumbnail Image.png
Description
Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.
ContributorsMyers, Natalie Kristine (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Hall, Sharon (Committee member) / Turner, Benjamin (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
148164-Thumbnail Image.png
Description

Waste pickers are the victims of harsh economic and social factors that have hurt many developing countries and billions of people around the world. Due to the rise of industrialization since the 19th century, waste and disposable resources have been discarded around the world to provide more resources, products, and

Waste pickers are the victims of harsh economic and social factors that have hurt many developing countries and billions of people around the world. Due to the rise of industrialization since the 19th century, waste and disposable resources have been discarded around the world to provide more resources, products, and services to wealthy countries. This has put developing countries in a precarious position where people have had very few economic opportunities besides taking on the role of waste pickers, who not only face physical health consequences due to the work they do but also face exclusion from society due to the negative views of waste pickers. Many people view waste pickers as scavengers and people who survive off of doing dirty work, which creates tensions between waste pickers and others in society. This even leads to many countries outlawing waste picking and has led to the brutal treatment of waste pickers throughout the world and has even led to thousands of waste pickers being killed by anti-waste picker groups and law enforcement organizations in many countries. <br/> Waste pickers are often at the bottom of supply-chains as they take resources that have been used and discarded, and provide them to recyclers, waste management organizations, and others who are able to turn these resources into usable materials again. Waste pickers do not have many opportunities to rise above the situation they are in as waste picking has become the only option for many people who need to provide for themselves and their families. They are not compensated very well for the work they do, which also contributes to the situation where waste pickers are forced into a position of severe health risks, backlash from society and governments, not being able to seek better opportunities due to a lack of earning potential, and not being connected with end-users. Now is the time to create new business models that solve these large problems in our global society and create a sustainable way to ensure that waste pickers are treated properly around the world.

ContributorsKidd, Isabella Joy (Co-author) / Kapps, Jack (Co-author) / Urbina-Bernal, Alejandro (Thesis director) / Byrne, Jared (Committee member) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Morrison School of Agribusiness (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148278-Thumbnail Image.png
Description

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular economy to reduce the amount of waste generated in shoe creation. We have designed a sandal that accommodates the rapid consumption element of fast fashion with a business model that promotes sustainability through a buy-back method to upcycle and retain our materials.

ContributorsSuresh Kumar, Roshni (Co-author) / Yang, Andrea (Co-author) / Liao, Yuxin (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148330-Thumbnail Image.png
Description

Utilizing ASU’s cardboard waste to build furniture products for students living in residence halls will assist in solving multiple problems for students, the university and the environment. Our business will alleviate the problems of excessive cardboard waste in the dumpsters, the lack of certain furniture items which are not provided

Utilizing ASU’s cardboard waste to build furniture products for students living in residence halls will assist in solving multiple problems for students, the university and the environment. Our business will alleviate the problems of excessive cardboard waste in the dumpsters, the lack of certain furniture items which are not provided by the residence halls at move-in, and ultimately address the lack of low-cost, up-cycled furniture products on the market.

ContributorsNorvell, Macey Elizabeth (Co-author) / Islam, Shauda (Co-author) / Werner, Isabella (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Marketing (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring

This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring different aspects of business, with the end goal of gaining traction. The product we were given to work through this process with was Hot Head, an engineering capstone project concept. The Hot Head product is a sustainable and innovative solution to the water waste issue we find is very prominent in the United States. In order to bring the Hot Head idea to life, we were tasked with doing research on topics ranging from the Hot Head life cycle to finding plausible personas who may have an interest in the Hot Head product. This paper outlines the journey to gaining traction via a marketing campaign and exposure of our brand on several platforms, with a specific interest in website traffic. Our research scope comes from mainly primary sources like gathering opinions of potential buyers by sending out surveys and hosting focus groups. The paper concludes with some possible future steps that could be taken if this project were to be continued.

ContributorsLozano Porras, Mariela (Co-author) / Rote, Jennifer (Co-author) / Goodall, Melody (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Department of Marketing (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148070-Thumbnail Image.png
Description

Our Founders Lab team — Jacob Benevento, Sydney Evans, and Alec Whiteley — participated in a year-long entrepreneurial journey that led to the creation and launch of our venture, Certified Circular. Certified Circular is a program that certifies on-campus events for implementing circular practices into their activities as well as

Our Founders Lab team — Jacob Benevento, Sydney Evans, and Alec Whiteley — participated in a year-long entrepreneurial journey that led to the creation and launch of our venture, Certified Circular. Certified Circular is a program that certifies on-campus events for implementing circular practices into their activities as well as off-campus businesses. The venture was formed in response to our group’s propelling question and industry selection which called on us to create and market a venture within the ethical circular economy.

ContributorsEvans, Sydney Nicole Kollar (Co-author) / Benevento, Jacob (Co-author) / Whiteley, Alec (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05