Matching Items (14)
Filtering by

Clear all filters

152491-Thumbnail Image.png
Description
Transformational sustainability science demands that stakeholders and researchers consider the needs and values of future generations in pursuit of solutions to sustainability problems. This dissertation research focuses on the real-world problem of unsustainable water governance in the Phoenix region of Central Arizona. A sustainability transition is the local water system

Transformational sustainability science demands that stakeholders and researchers consider the needs and values of future generations in pursuit of solutions to sustainability problems. This dissertation research focuses on the real-world problem of unsustainable water governance in the Phoenix region of Central Arizona. A sustainability transition is the local water system is necessary to overcome sustainability challenges and scenarios can be used to explore plausible and desirable futures to inform a transition, but this requires some methodological refinements. This dissertation refines scenario methodology to generate water governance scenarios for metropolitan Phoenix that: (i) feature enhanced stakeholder participation; (ii) incorporate normative values and preferences; (iii) focus on governance actors and their activities; and (iv) meet an expanded set of quality criteria. The first study in the dissertation analyzes and evaluates participatory climate change scenarios to provide recommendations for the construction and use of scenarios that advance climate adaptation and mitigation efforts. The second study proposes and tests a set of plausibility indications to substantiate or evaluate claims that scenarios and future projections could become reality, helping to establish the legitimacy of radically different or transformative scenarios among an extended peer community. The case study of water governance begins with the third study, which includes a current state analysis and sustainability appraisal of the Phoenix-area water system. This is followed by a fourth study which surveys Phoenix-area water decision-makers to better understand water-related preferences for use in scenario construction. The fifth and final study applies a multi-method approach to construct future scenarios of water governance in metropolitan Phoenix in 2030 using stakeholder preferences, among other normative frames, and testing systemic impacts with WaterSim 5.0, a dynamic simulation model of water in the region. The scenarios are boundary objects around which stakeholders can weigh tradeoffs, set priorities and reflect on impacts of water-related activities, broadening policy dialogues around water governance in central Arizona. Together the five studies advance transformational sustainability research by refining methods to engage stakeholders in crafting futures that define how individuals and institutions should operate in transformed and sustainable systems.
ContributorsKeeler, Lauren Withycombe (Author) / Wiek, Arnim (Thesis advisor) / White, Dave D (Committee member) / Lang, Daniel J (Committee member) / Arizona State University (Publisher)
Created2014
153423-Thumbnail Image.png
Description
As climate change becomes a greater challenge in today's society, it is critical to understand young people's perceptions of the phenomenon because they will become the next generation of decision-makers. This study examines knowledge, beliefs, and behaviors among high school students. The subjects of this study include students from high

As climate change becomes a greater challenge in today's society, it is critical to understand young people's perceptions of the phenomenon because they will become the next generation of decision-makers. This study examines knowledge, beliefs, and behaviors among high school students. The subjects of this study include students from high school science classes in Phoenix, Arizona, and Plainfield, Illinois. Using surveys and small group interviews to engage students in two climatically different locations, three questions were answered:

1) What do American students know and believe about climate change? How is knowledge related to beliefs?

2) What types of behaviors are students exhibiting that may affect climate change? How do beliefs relate to behavioral choices?

3) Do climate change knowledge, beliefs, and behaviors vary between geographic locations in the United States?

The results of this study begin to highlight the differences between knowledge, beliefs, and behaviors around the United States. First, results showed that students have heard of climate change but often confused aspects of the problem, and they tended to focus on causes and impacts, as opposed to solutions. Related to beliefs, students tended to believe that climate change is caused by both humans and natural trends, and would affect plant and animal species more than themselves and their families. Second, students were most likely to participate in individual behaviors such as turning off lights and electronics, and least likely to take public transportation and eat a vegetarian meal. Individual behaviors seem to be most relevant to this age group, in contrast to policy solutions. Third, students in Illinois felt they would be more likely to experience colder temperatures and more precipitation than those in Arizona, where students were more concerned about rising temperatures.

Understanding behaviors, motivations behind beliefs and choices, and barriers to actions can support pro-environmental behavior change. Educational strategies can be employed to more effectively account for the influences on a young person's belief formation and behavior choices. Providing engagement opportunities with location-specific solutions that are more feasible for youth to participate in on their own could also support efforts for behavior change.
ContributorsKruke, Laurel (Author) / Larson, Kelli (Thesis advisor) / Klinsky, Sonja (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2015
150149-Thumbnail Image.png
Description
The sacred San Francisco Peaks in northern Arizona have been at the center of a series of land development controversies since the 1800s. Most recently, a controversy arose over a proposal by the ski area on the Peaks to use 100% reclaimed water to make artificial snow. The current state

The sacred San Francisco Peaks in northern Arizona have been at the center of a series of land development controversies since the 1800s. Most recently, a controversy arose over a proposal by the ski area on the Peaks to use 100% reclaimed water to make artificial snow. The current state of the San Francisco Peaks controversy would benefit from a decision-making process that holds sustainability policy at its core. The first step towards a new sustainability-focused deliberative process regarding a complex issue like the San Francisco Peaks controversy requires understanding the issue's origins and the perspectives of the people involved in the issue. My thesis provides an historical analysis of the controversy and examines some of the laws and participatory mechanisms that have shaped the decision-making procedures and power structures from the 19th century to the early 21st century.
ContributorsMahoney, Maren (Author) / Hirt, Paul W. (Thesis advisor) / Tsosie, Rebecca (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2011
150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
150146-Thumbnail Image.png
Description
Driven by concern over environmental, economic and social problems, small, place based communities are engaging in processes of transition to become more sustainable. These communities may be viewed as innovative front runners of a transition to a more sustainable society in general, each one, an experiment in social transformation. These

Driven by concern over environmental, economic and social problems, small, place based communities are engaging in processes of transition to become more sustainable. These communities may be viewed as innovative front runners of a transition to a more sustainable society in general, each one, an experiment in social transformation. These experiments present learning opportunities to build robust theories of community transition and to create specific, actionable knowledge to improve, replicate, and accelerate transitions in real communities. Yet to date, there is very little empirical research into the community transition phenomenon. This thesis empirically develops an analytical framework and method for the purpose of researching community transition processes, the ultimate goal of which is to arrive at a practice of evidence based transitions. A multiple case study approach was used to investigate three community transitions while simultaneously developing the framework and method in an iterative fashion. The case studies selected were Ashton Hayes, a small English village, BedZED, an urban housing complex in London, and Forres, a small Scottish town. Each community was visited and data collected by interview and document analysis. The research design brings together elements of process tracing, transformative planning and governance, sustainability assessment, transition path analysis and transition management within a multiple case study envelope. While some preliminary insights are gained into community transitions based on the three cases the main contribution of this thesis is in the creation of the research framework and method. The general framework and method developed has potential for standardizing and synthesizing research of community transition processes leading to both theoretical and practical knowledge that allows sustainability transition to be approached with confidence and not just hope.
ContributorsForrest, Nigel (Author) / Wiek, Arnim (Thesis advisor) / Golub, Aaron (Thesis advisor) / Redman, Charles (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2011
157239-Thumbnail Image.png
Description
As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few

As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few studies assess the unique role of waterway restorations to bridge anthropocentric and ecological concerns in urban environments. To address this gap, my study addressed if well-established sustainability principles are evoked during the nascent discourse of recently proposed urban waterway developments along over fifty miles of Arizona’s Salt River. In this study, a deductive content analysis is used to illuminate the emergence of sustainability principles, the framing of the redevelopment, and to illuminate macro-environmental discourses. Three sustainability principles dominated the discourse: civility and democratic governance; livelihood sufficiency and opportunity; and social-ecological system integrity. These three principles connected to three macro-discourses: economic rationalism; democratic pragmatism; and ecological modernity. These results hold implications for policy and theory and inform urban development processes for improvements to sustainability. As continued densification, in-fill and rapid urbanization continues in the 21st century, more cities are looking to reconstruct urban riverways. Therefore, the emergent sustainability discourse regarding potential revitalizations along Arizona’s Salt River is a manifestation of how waterways are perceived, valued, and essential to urban environments for anthropocentric and ecological needs.
ContributorsHorvath, Veronica (Author) / White, Dave D (Thesis advisor) / Mirumachi, Naho (Committee member) / Childers, Dan (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2019
154760-Thumbnail Image.png
Description
The media is a powerful force in shaping public discussions about marine issues. Many people lack first-hand experiences and direct sources of information about fisheries topics, so they rely heavily on the information presented to them in the news. Thus, the media has the potential to influence public agendas based

The media is a powerful force in shaping public discussions about marine issues. Many people lack first-hand experiences and direct sources of information about fisheries topics, so they rely heavily on the information presented to them in the news. Thus, the media has the potential to influence public agendas based on their selective coverage of topics, which primes people to take certain information into account when making decisions. This study examines the contents of 412 newspaper articles from five national newspapers to determine which topics are receiving the most coverage and how they are being communicated to the public. The analysis considers fisheries and seafood discussions overall, as well as focusing on the three most commonly consumed seafood items in the United States: salmon, shrimp, and tuna. Systematic coding of newspaper articles shows that economic and social fisheries concerns are emphasized more than environmental concerns. Additionally, fisheries articles tend to be emphasize the importance of fishermen’s livelihoods, the dangers of international seafood trade, the economic utility of fish, and a consumer’s right to make informed decisions about seafood. Overall, there are a number of conflicts and weaknesses in the media’s coverage of fisheries, which would likely make it challenging for Americans to make informed, sustainability-minded decisions about seafood purchases and fisheries policies.
ContributorsChipman, Danielle (Author) / Larson, Kelli L (Thesis advisor) / White, Dave (Committee member) / Klinsky, Sonja (Committee member) / Arizona State University (Publisher)
Created2016
187828-Thumbnail Image.png
Description
With less than seven years left to reach the ambitious targets of the United Nations' 2030 Sustainable Development Goals (SDGs), it is imperative to understand how the SDGs are operationalized in practice to support effective governance. One integrative approach, the water, energy, and food (WEF) nexus, has been proposed to

With less than seven years left to reach the ambitious targets of the United Nations' 2030 Sustainable Development Goals (SDGs), it is imperative to understand how the SDGs are operationalized in practice to support effective governance. One integrative approach, the water, energy, and food (WEF) nexus, has been proposed to facilitate SDGs planning and implementation by incorporating synergies, co-benefits, and trade-offs. In this dissertation, I conduct three interrelated WEF nexus studies using a sustainability lens to develop new approaches and identify actionable measures to support the SDGs. The first paper is a systematic literature review (2015 – 2022) to investigate the extent to which WEF nexus research has generated actionable knowledge to achieve the SDGs. The findings show that the WEF nexus literature explicitly considering the SDGs mainly focuses on governance and environmental protection, with fewer studies focusing on target populations and affordability. In the second paper, I reframed the water quality concerns using a nexus and systems thinking approach in a FEW nexus hotspot, the Rio Negro Basin (RNB) in Uruguay. While Uruguay is committed to the 2030 Agenda for Sustainable Development, sustainability challenges endure in managing synergies and trade-offs, resulting in strategy setbacks for the sustainable development of food, land, water, and oceans. Reframing the water quality problem facilitated the identification of potential alternative intervention points to support local problem-solving capacity. In the third paper, I conducted semi-structured interviews and examined the meeting transcripts of the RNB Commission to understand local perspectives about how the activities and initiatives taking place in the basin enhance or diminish the overall sustainability. Sustainability criteria for river basin planning and management were operationalized through qualitative appraisal questions. The case of the RNB illustrates the challenges of coordinating the national development agenda to local livelihood. This dissertation advances the WEF nexus and sustainability science literature by shedding light on the implications of the research trend to support the SDGs, as well as reframing and appraising a persistent water quality problem to support sustainable development.
ContributorsOjeda Matos, Glorynel (Author) / White, Dave D (Thesis advisor) / Brundiers, Katja (Committee member) / Garcia, Margaret (Committee member) / Arizona State University (Publisher)
Created2023
171625-Thumbnail Image.png
Description
The Water-Energy Nexus (WEN) is a concept that recognizes the interdependence of water and energy systems. The Phoenix metropolitan region (PMA) in Arizona has significant and potentially vulnerable WEN interactions. Future projections indicate that the population will increase and, with it, energy needs, while changes in future water demand are

The Water-Energy Nexus (WEN) is a concept that recognizes the interdependence of water and energy systems. The Phoenix metropolitan region (PMA) in Arizona has significant and potentially vulnerable WEN interactions. Future projections indicate that the population will increase and, with it, energy needs, while changes in future water demand are more uncertain. Climate change will also likely cause a reduction in surface water supply sources. Under these constraints, the expansion of renewable energy technology has the potential to benefit both water and energy systems and increase environmental sustainability by meeting future energy demands while lowering water use and CO2 emissions. However, the WEN synergies generated by renewables have not yet been thoroughly quantified, nor have the related costs been studied and compared to alternative options.Quantifying WEN intercations using numerical models is key to assessing renewable energy synergy. Despite recent advances, WEN models are still in their infancy, and research is needed to improve their accuracy and identify their limitations. Here, I highlight three research needs. First, most modeling efforts have been conducted for large-scale domains (e.g., states), while smaller scales, like metropolitan regions, have received less attention. Second, impacts of adopting different temporal (e.g., monthly, annual) and spatial (network granularity) resolutions on simulation accuracy have not been quantified. Third, the importance of simulating feedbacks between water and energy components has not been analyzed. This dissertation fills these major research gaps by focusing on long-term water allocations and energy dispatch in the metropolitan region of Phoenix. An energy model is developed using the Low Emissions Analysis Platform (LEAP) platform and is subsequently coupled with a water management model based on the Water Evaluation and Planning (WEAP) platform. Analyses are conducted to quantify (1) the value of adopting coupled models instead of single models that are externally coupled, and (2) the accuracy of simulations based on different temporal resolutions of supply and demand and spatial granularity of the water and energy networks. The WEAP-LEAP integrated model is then employed under future climate scenarios to quantify the potential of renewable energy technologies to develop synergies between the PMA's water and energy systems.
ContributorsMounir, Adil (Author) / Mascaro, Giuseppe (Thesis advisor) / White, Dave (Committee member) / Garcia, Margaret (Committee member) / Xu, Tianfang (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2022
191498-Thumbnail Image.png
Description
How can we understand and pursue sustainability transitions that disrupt everyday practices and social norms? This dissertation finds potential answers to this fundamental sustainability governance question in Arizona utilities’ efforts to legitimate wastewater as a drinking water source. Due to widespread public concern regarding the direct potable reuse of wastewater

How can we understand and pursue sustainability transitions that disrupt everyday practices and social norms? This dissertation finds potential answers to this fundamental sustainability governance question in Arizona utilities’ efforts to legitimate wastewater as a drinking water source. Due to widespread public concern regarding the direct potable reuse of wastewater (DPR), utilities and other stakeholders have developed innovative governance approaches. By offering tastings of DPR water (often in the form of beer), utilities create spaces for deliberation within a traditionally top-down policy planning paradigm, and furthermore, invite feelings—emotions and bodily sensations—into policymaking. This dissertation explores and advances Arizona's emerging transition to deliberative water governance through three distinct investigations. The first of these, an institutional analysis based on interviews with 34 regional stakeholders and observations at 56 water industry meetings, identifies direct experiences with DPR (e.g., tastings) as a pivotal strategy to institutionalize new wastewater practices. The second investigation examines utility-sponsored initiatives to promote DPR and finds that, instead of assuming that consumers behave as rational choice or bounded rationality would predict, water utilities’ use of drinking water tastings reflects a new normative assumption, termed embodied rationality. The third investigation applies embodied rationality in action research with skeptical consumers and reuse industry stakeholders to co-design an exhibit about DPR that engaged more than 1,100 people. Drawing insights from the literatures of embodied and enacted cognition, practice theory, organizational institutionalism, sustainability transitions management, and design research, this dissertation proposes an analytical approach, normative framework, and practical tools for collaboratively addressing real-world sustainability challenges.
ContributorsManheim, Marisa (Author) / White, Dave (Thesis advisor) / Spackman, Christy (Committee member) / Eakin, Hallie (Committee member) / Arizona State University (Publisher)
Created2024