Matching Items (14)
Filtering by

Clear all filters

151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
152207-Thumbnail Image.png
Description
Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis,

Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis, where CO2 benefits occurring during use of the PV panels is found to exceed emissions generated during the PV manufacturing phase including materials extraction and manufacture of the PV panels prior to installation. However, this approach neglects to recognize that the environmental costs of CO2 release during manufacture are incurred early, while environmental benefits accrue later. Thus, where specific policy targets suggest meeting CO2 reduction targets established by a certain date, rapid PV deployment may have counter-intuitive, albeit temporary, undesired consequences. Thus, on a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood. This phenomenon is particularly acute when PV manufacture occurs in areas using CO2 intensive energy sources (e.g., coal), but deployment occurs in areas with less CO2 intensive electricity sources (e.g., hydro). This thesis builds a dynamic Cumulative Radiative Forcing (CRF) model to examine the inter-temporal warming impacts of PV deployments in three locations: California, Wyoming and Arizona. The model includes the following factors that impact CRF: PV deployment rate, choice of PV technology, pace of PV technology improvements, and CO2 intensity in the electricity mix at manufacturing and deployment locations. Wyoming and California show the highest and lowest CRF benefits as they have the most and least CO2 intensive grids, respectively. CRF payback times are longer than CO2 payback times in all cases. Thin film, CdTe PV technologies have the lowest manufacturing CO2 emissions and therefore the shortest CRF payback times. This model can inform policies intended to fulfill time-sensitive CO2 mitigation goals while minimizing short term radiative forcing.
ContributorsTriplican Ravikumar, Dwarakanath (Author) / Seager, Thomas P (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Chester, Mikhail V (Committee member) / Sinha, Parikhit (Committee member) / Arizona State University (Publisher)
Created2013
152852-Thumbnail Image.png
Description
The environmental and economic assessment of neighborhood-scale transit-oriented urban form changes should include initial construction impacts through long-term use to fully understand the benefits and costs of smart growth policies. The long-term impacts of moving people closer to transit require the coupling of behavioral forecasting with environmental assessment. Using new

The environmental and economic assessment of neighborhood-scale transit-oriented urban form changes should include initial construction impacts through long-term use to fully understand the benefits and costs of smart growth policies. The long-term impacts of moving people closer to transit require the coupling of behavioral forecasting with environmental assessment. Using new light rail and bus rapid transit in Los Angeles, California as a case study, a life-cycle environmental and economic assessment is developed to assess the potential range of impacts resulting from mixed-use infill development. An integrated transportation and land use life-cycle assessment framework is developed to estimate energy consumption, air emissions, and economic (public, developer, and user) costs. Residential and commercial buildings, automobile travel, and transit operation changes are included and a 60-year forecast is developed that compares transit-oriented growth against growth in areas without close access to high-capacity transit service. The results show that commercial developments create the greatest potential for impact reductions followed by residential commute shifts to transit, both of which may be effected by access to high-capacity transit, reduced parking requirements, and developer incentives. Greenhouse gas emission reductions up to 470 Gg CO2-equivalents per year can be achieved with potential costs savings for TOD users. The potential for respiratory impacts (PM10-equivalents) and smog formation can be reduced by 28-35%. The shift from business-as-usual growth to transit-oriented development can decrease user costs by $3,100 per household per year over the building lifetime, despite higher rental costs within the mixed-use development.
ContributorsNahlik, Matthew (Author) / Chester, Mikhail V (Thesis advisor) / Pendyala, Ram (Committee member) / Fraser, Matthew (Committee member) / Arizona State University (Publisher)
Created2014
153424-Thumbnail Image.png
Description
Comparative life cycle assessment (LCA) evaluates the relative performance of multiple products, services, or technologies with the purpose of selecting the least impactful alternative. Nevertheless, characterized results are seldom conclusive. When one alternative performs best in some aspects, it may also performs worse in others. These tradeoffs among different impact

Comparative life cycle assessment (LCA) evaluates the relative performance of multiple products, services, or technologies with the purpose of selecting the least impactful alternative. Nevertheless, characterized results are seldom conclusive. When one alternative performs best in some aspects, it may also performs worse in others. These tradeoffs among different impact categories make it difficult to identify environmentally preferable alternatives. To help reconcile this dilemma, LCA analysts have the option to apply normalization and weighting to generate comparisons based upon a single score. However, these approaches can be misleading because they suffer from problems of reference dataset incompletion, linear and fully compensatory aggregation, masking of salient tradeoffs, weight insensitivity and difficulties incorporating uncertainty in performance assessment and weights. Consequently, most LCA studies truncate impacts assessment at characterization, which leaves decision-makers to confront highly uncertain multi-criteria problems without the aid of analytic guideposts. This study introduces Stochastic Multi attribute Analysis (SMAA), a novel approach to normalization and weighting of characterized life-cycle inventory data for use in comparative Life Cycle Assessment (LCA). The proposed method avoids the bias introduced by external normalization references, and is capable of exploring high uncertainty in both the input parameters and weights.
ContributorsPrado, Valentina (Author) / Seager, Thomas P (Thesis advisor) / Chester, Mikhail V (Committee member) / Kullapa Soratana (Committee member) / Tervonen, Tommi (Committee member) / Arizona State University (Publisher)
Created2015
156717-Thumbnail Image.png
Description
Electricity infrastructure vulnerabilities were assessed for future heat waves due to climate change. Critical processes and component relationships were identified and characterized with consideration for the terminal event of service outages, including cascading failures in transmission-level components that can result in blackouts. The most critical dependency identified was the increase

Electricity infrastructure vulnerabilities were assessed for future heat waves due to climate change. Critical processes and component relationships were identified and characterized with consideration for the terminal event of service outages, including cascading failures in transmission-level components that can result in blackouts. The most critical dependency identified was the increase in peak electricity demand with higher air temperatures. Historical and future air temperatures were characterized within and across Los Angeles County, California (LAC) and Maricopa County (Phoenix), Arizona. LAC was identified as more vulnerable to heat waves than Phoenix due to a wider distribution of historical temperatures. Two approaches were developed to estimate peak demand based on air temperatures, a top-down statistical model and bottom-up spatial building energy model. Both approaches yielded similar results, in that peak demand should increase sub-linearly at temperatures above 40°C (104 °F) due to saturation in the coincidence of air conditioning (AC) duty cycles. Spatial projections for peak demand were developed for LAC to 2060 considering potential changes in population, building type, building efficiency, AC penetration, appliance efficiency, and air temperatures due climate change. These projections were spatially allocated to delivery system components (generation, transmission lines, and substations) to consider their vulnerability in terms of thermal de-rated capacity and weather adjusted load factor (load divided by capacity). Peak hour electricity demand was projected to increase in residential and commercial sectors by 0.2–6.5 GW (2–51%) by 2060. All grid components, except those near Santa Monica Beach, were projected to experience 2–20% capacity loss due to air temperatures exceeding 40 °C (104 °F). Based on scenario projections, and substation load factors for Southern California Edison (SCE), SCE will require 848—6,724 MW (4-32%) of additional substation capacity or peak shaving in its LAC service territories by 2060 to meet additional demand associated with population growth projections.
ContributorsBurillo, Daniel (Author) / Chester, Mikhail V (Thesis advisor) / Ruddell, Benjamin (Committee member) / Johnson, Nathan (Committee member) / Arizona State University (Publisher)
Created2018
154744-Thumbnail Image.png
Description
Energy use within urban building stocks is continuing to increase globally as populations expand and access to electricity improves. This projected increase in demand could require deployment of new generation capacity, but there is potential to offset some of this demand through modification of the buildings themselves. Building

Energy use within urban building stocks is continuing to increase globally as populations expand and access to electricity improves. This projected increase in demand could require deployment of new generation capacity, but there is potential to offset some of this demand through modification of the buildings themselves. Building stocks are quasi-permanent infrastructures which have enduring influence on urban energy consumption, and research is needed to understand: 1) how development patterns constrain energy use decisions and 2) how cities can achieve energy and environmental goals given the constraints of the stock. This requires a thorough evaluation of both the growth of the stock and as well as the spatial distribution of use throughout the city. In this dissertation, a case study in Los Angeles County, California (LAC) is used to quantify urban growth, forecast future energy use under climate change, and to make recommendations for mitigating energy consumption increases. A reproducible methodological framework is included for application to other urban areas.

In LAC, residential electricity demand could increase as much as 55-68% between 2020 and 2060, and building technology lock-in has constricted the options for mitigating energy demand, as major changes to the building stock itself are not possible, as only a small portion of the stock is turned over every year. Aggressive and timely efficiency upgrades to residential appliances and building thermal shells can significantly offset the projected increases, potentially avoiding installation of new generation capacity, but regulations on new construction will likely be ineffectual due to the long residence time of the stock (60+ years and increasing). These findings can be extrapolated to other U.S. cities where the majority of urban expansion has already occurred, such as the older cities on the eastern coast. U.S. population is projected to increase 40% by 2060, with growth occurring in the warmer southern and western regions. In these growing cities, improving new construction buildings can help offset electricity demand increases before the city reaches the lock-in phase.
ContributorsReyna, Janet Lorel (Author) / Chester, Mikhail V (Thesis advisor) / Gurney, Kevin (Committee member) / Reddy, T. Agami (Committee member) / Rey, Sergio (Committee member) / Arizona State University (Publisher)
Created2016
154722-Thumbnail Image.png
Description
This thesis examines using thermal energy storage as a demand side management tool for air-conditioning loads with the goal of increasing photovoltaic penetration. It uses Arizona State University (ASU) as a case study. The analysis is completed with a modeling approach using typical meteorological year (TMY) data, along with ASU’s

This thesis examines using thermal energy storage as a demand side management tool for air-conditioning loads with the goal of increasing photovoltaic penetration. It uses Arizona State University (ASU) as a case study. The analysis is completed with a modeling approach using typical meteorological year (TMY) data, along with ASU’s historical load data. Sustainability, greenhouse gas emissions, carbon neutrality, and photovoltaic (PV) penetration are all considered along with potential economic impacts.

By extrapolating the air-conditioning load profile from the existing data sets, it can be ensured that cooling demands can be met at all times under the new management method. Using this cooling demand data, it is possible to determine how much energy is required to meet these needs. Then, modeling the PV arrays, the thermal energy storage (TES), and the chillers, the maximum PV penetration in the future state can be determined.

Using this approach, it has been determined that ASU can increase their solar PV resources by a factor of 3.460, which would amount to a PV penetration of approximately 48%.
ContributorsRouthier, Alexander F (Author) / Honsberg, Christiana (Thesis advisor) / Fraser, Matthew (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2016
154826-Thumbnail Image.png
Description
'Attributional' Life Cycle Assessment (LCA) quantitatively tracks the potential environmental impacts of international value chains, in retrospective, while ensuring that burden shifting is avoided. Despite the growing popularity of LCA as a decision-support tool, there are numerous concerns relating to uncertainty and variability in LCA that affects its reliability and

'Attributional' Life Cycle Assessment (LCA) quantitatively tracks the potential environmental impacts of international value chains, in retrospective, while ensuring that burden shifting is avoided. Despite the growing popularity of LCA as a decision-support tool, there are numerous concerns relating to uncertainty and variability in LCA that affects its reliability and credibility. It is pertinent that some part of future research in LCA be guided towards increasing reliability and credibility for decision-making, while utilizing the LCA framework established by ISO 14040.

In this dissertation, I have synthesized the present state of knowledge and application of uncertainty and variability in ‘attributional’ LCA, and contribute to its quantitative assessment.

Firstly, the present state of addressment of uncertainty and variability in LCA is consolidated and reviewed. It is evident that sources of uncertainty and variability exist in the following areas: ISO standards, supplementary guides, software tools, life cycle inventory (LCI) databases, all four methodological phases of LCA, and use of LCA information. One source of uncertainty and variability, each, is identified, selected, quantified, and its implications discussed.

The use of surrogate LCI data in lieu of missing dataset(s) or data-gaps is a source of uncertainty. Despite the widespread use of surrogate data, there has been no effort to (1) establish any form of guidance for the appropriate selection of surrogate data and, (2) estimate the uncertainty associated with the choice and use of surrogate data. A formal expert elicitation-based methodology to select the most appropriate surrogates and to quantify the associated uncertainty was proposed and implemented.

Product-evolution in a non-uniform manner is a source of temporal variability that is presently not considered in LCA modeling. The resulting use of outdated LCA information will lead to misguided decisions affecting the issue at concern and eventually the environment. In order to demonstrate product-evolution within the scope of ISO 14044, and given that variability cannot be reduced, the sources of product-evolution were identified, generalized, analyzed and their implications (individual and coupled) on LCA results are quantified.

Finally, recommendations were provided for the advancement of robustness of 'attributional' LCA, with respect to uncertainty and variability.
ContributorsSubramanian, Vairavan (Author) / Golden, Jay S (Thesis advisor) / Chester, Mikhail V (Thesis advisor) / Allenby, Braden R. (Committee member) / Dooley, Kevin J (Committee member) / Arizona State University (Publisher)
Created2016
154966-Thumbnail Image.png
Description
With high potential for automobiles to cause air pollution and greenhouse gas emissions, there is concern that automobiles accessing or egressing public transportation may cause emissions similar to regular automobile use. Due to limited literature and research that evaluates and discusses environmental impacts from first and last mile portions of

With high potential for automobiles to cause air pollution and greenhouse gas emissions, there is concern that automobiles accessing or egressing public transportation may cause emissions similar to regular automobile use. Due to limited literature and research that evaluates and discusses environmental impacts from first and last mile portions of transit trips, there is a lack of understanding on this topic. This research aims to comprehensively evaluate the life cycle impacts of first and last mile trips on multimodal transit. A case study of transit and automobile travel in the greater Los Angeles region is evaluated by using a comprehensive life cycle assessment combined with regional household travel survey data to evaluate first-last mile trip impacts in multimodal transit focusing on automobile trips accessing or egressing transit. First and last mile automobile trips were found to increase total multimodal transit trip emissions by 2 to 12 times (most extreme cases were carbon monoxide and volatile organic compounds). High amounts of coal-fired energy generation can cause electric propelled rail trips with automobile access or egress to have similar or more emissions (commonly greenhouse gases, sulfur dioxide, and mono-nitrogen oxides) than competing automobile trips, however, most criteria air pollutants occur remotely. Methods to reduce first-last mile impacts depend on the characteristics of the transit systems and may include promoting first-last mile carpooling, adjusting station parking pricing and availability, and increased emphasis on walking and biking paths in areas with low access-egress trip distances.
ContributorsHoehne, Christopher G (Author) / Chester, Mikhail V (Thesis advisor) / Salon, Deborah (Committee member) / Zhou, Xuesong (Committee member) / Arizona State University (Publisher)
Created2016
137742-Thumbnail Image.png
Description
Shifting to renewable energy from fossil fuels is not occurring rapidly. Determining where to locate renewable power plants could help expedite development. The project discussed here uses a GIS ranking tool to determine potential locations for solar and wind power plants in Arizona. Criteria include renewable input (irradiance/wind class), topographic

Shifting to renewable energy from fossil fuels is not occurring rapidly. Determining where to locate renewable power plants could help expedite development. The project discussed here uses a GIS ranking tool to determine potential locations for solar and wind power plants in Arizona. Criteria include renewable input (irradiance/wind class), topographic slope, and distance from transmission lines. These are ranked and summed to determine areas with the most potential. The resulting outputs show that there is much more potential land for solar development than wind development. Further analysis in this paper will focus solely on solar due to wind's lower potential. Land sensitivity and ownership are used to assess the feasibility of development. There are many groupings of highly ranked land across the state, but the largest stretch of land runs from outside of Marana (south-central Arizona) northwest to about 60 miles west of Wickenburg (central-west). This regions is mainly on BLM, state, and privately owned land. Some of this land is considered sensitive, but non-sensitive areas with high potential are frequent throughout. Renewable potential in other states could be determined using this tool as well. Variables could be weighted or added depending on each area's need.
ContributorsZeck, Kevin Michael (Author) / Fraser, Matthew (Thesis director) / Pasqualetti, Martin (Committee member) / Cowger, Lane (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2013-05