Matching Items (45)
Filtering by

Clear all filters

147999-Thumbnail Image.png
Description

The purpose of this study is to examine the social and communicative barriers LGBTQIA+ students face when seeking healthcare at campus health and counseling services at Arizona State University. Social barriers relate to experiences and internalizations of societal stigma experienced by sexual and gender minority individuals as well as the

The purpose of this study is to examine the social and communicative barriers LGBTQIA+ students face when seeking healthcare at campus health and counseling services at Arizona State University. Social barriers relate to experiences and internalizations of societal stigma experienced by sexual and gender minority individuals as well as the anticipation of such events. Communication between patient and provider was assessed as a potential barrier with respect to perceived provider LGBTQIA+ competency. This study applies the minority stress model, considering experiences of everyday stigma and minority stress as a predictor of healthcare utilization among sexual and gender minority students. The findings suggest a small but substantial correlation between minority stress and healthcare use with 23.7% of respondents delaying or not receiving one or more types of care due to fear of stigma or discrimination. Additionally, communication findings indicate a lack of standardization of LGBTQIA+ competent care with experiences varying greatly between respondents.

ContributorsZahn, Jennica (Author) / Davis, Olga (Thesis director) / LeMaster, Benny (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137706-Thumbnail Image.png
Description
Despite similar climate, ecosystem, and population size, the cities of Hermosillo, Mexico and Mesa, USA manage their water very differently. Mesa has a stable and resilient system organized around state and federal regulations. Hermosillo, after rapidly industrializing, has not been able to cope with climate change and long-term drought conditions.

Despite similar climate, ecosystem, and population size, the cities of Hermosillo, Mexico and Mesa, USA manage their water very differently. Mesa has a stable and resilient system organized around state and federal regulations. Hermosillo, after rapidly industrializing, has not been able to cope with climate change and long-term drought conditions. Water distribution statistics, stakeholders, policy structure, and government organization were combined in an organizational framework to compare the practices of the two cities. These inputs were weighed against the outcomes and the sustainability of each system. While Mesa is part of a massive metropolitan area, Hermosillo is still developing into a metropolitan center and does not have access to the same infrastructure and resources. In Hermosillo local needs are frequently discounted in favor of broad political goals.
ContributorsMoe, Rud Lamb (Author) / Chhetri, Netra (Thesis director) / White, Dave (Committee member) / Robles-Morua, Agustin (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2013-05
137209-Thumbnail Image.png
Description
Social relationships are the single most factor that create joy in human lives. And yet, the ways we are building our cities and structuring our lives reduces our chances of interaction and increases isolation. Creating more public spaces may be a possible solution to this problem of declining social cohesion.

Social relationships are the single most factor that create joy in human lives. And yet, the ways we are building our cities and structuring our lives reduces our chances of interaction and increases isolation. Creating more public spaces may be a possible solution to this problem of declining social cohesion. Public spaces have been shown to improve rates of social cohesion and social interaction. They have also been show to have positive effects on physical health, local economies, the natural environment, reducing crime rates and psychological health. Creating public spaces in areas that are low-income or have limited amounts of space can be very challenging. This paper profiles options of community created spaces, space public spaces and temporary public spaces. All of which are options for low-income and limited space communities. The paper concludes with the summery of an active project to create a public space in such a community through a joint-use agreement.
ContributorsChampagne, Elizabeth Anne (Author) / Golub, Aaron (Thesis director) / Kelley, Jason (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Department of Psychology (Contributor)
Created2014-05
136399-Thumbnail Image.png
Description
Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City,

Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City, Abu Dhabi, UAE. Key aspects of the arcology that could be applied to an existing urban fabric are identified, such as urban design fostering social interaction, reduction of automobile dependency, and a development pattern that combats sprawl. Through interviews with local representatives, a holistic approach to applying arcology concepts to the Phoenix Metro Area is devised.
ContributorsSpencer, Sarah Anne (Author) / Manuel-Navarrete, David (Thesis director) / Salon, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2015-05
136132-Thumbnail Image.png
Description
Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on

Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on sample exteriors, a 4 mm passivating boundary layer effect was observed, impeding the carbonation process at the center. XRD analysis was used to characterize the extent of carbonation, indicating extremely poor carbonation and therefore CO2 penetration inside the visible boundary. The depth of the passivating layer was found to be independent of both time and choice of aggregate. Less than adequate strength was developed in carbonated trials due to formation of small, weakly-connected crystals, shown with SEM analysis. Additional research, especially in situ analysis with thermogravimetric analysis would be useful to determine the causation of poor carbonation performance. This technology has great potential to substitute for certain Portland cement applications if these issues can be addressed.
ContributorsHermens, Stephen Edward (Author) / Bearat, Hamdallah (Thesis director) / Dai, Lenore (Committee member) / Mobasher, Barzin (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136406-Thumbnail Image.png
Description
In this paper, I analyze representations of nature in popular film, using the feminist / deconstructionist concept of a dualism to structure my critique. Using Val Plumwood’s analysis of the logical structure of dualism and the 5 ‘features of a dualism’ that she identifies, I critique 5 popular movies –

In this paper, I analyze representations of nature in popular film, using the feminist / deconstructionist concept of a dualism to structure my critique. Using Val Plumwood’s analysis of the logical structure of dualism and the 5 ‘features of a dualism’ that she identifies, I critique 5 popular movies – Star Wars, Lord of the Rings, Brave, Grizzly Man, and Planet Earth – by locating within each of them one of the 5 features and explaining how the movie functions to reinforce the Nature/Culture dualism . By showing how the Nature/Culture dualism shapes and is shaped by popular cinema, I show how “Nature” is a social construct, created as part of this very dualism, and reified through popular culture. I conclude with the introduction of a number of ‘subversive’ pieces of visual art that undermine and actively deconstruct the Nature/Culture dualism and show to the viewer a more honest presentation of the non-human world.
ContributorsBarton, Christopher Joseph (Author) / Broglio, Ron (Thesis director) / Minteer, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2015-05
136500-Thumbnail Image.png
Description
Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.
ContributorsSchrilla, John Paul (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
137727-Thumbnail Image.png
Description
Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective,

Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.
ContributorsNorth, Emily Jean (Co-author) / Halden, Rolf (Co-author, Thesis director) / Mikhail, Chester (Committee member) / Hurlbut, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
137742-Thumbnail Image.png
Description
Shifting to renewable energy from fossil fuels is not occurring rapidly. Determining where to locate renewable power plants could help expedite development. The project discussed here uses a GIS ranking tool to determine potential locations for solar and wind power plants in Arizona. Criteria include renewable input (irradiance/wind class), topographic

Shifting to renewable energy from fossil fuels is not occurring rapidly. Determining where to locate renewable power plants could help expedite development. The project discussed here uses a GIS ranking tool to determine potential locations for solar and wind power plants in Arizona. Criteria include renewable input (irradiance/wind class), topographic slope, and distance from transmission lines. These are ranked and summed to determine areas with the most potential. The resulting outputs show that there is much more potential land for solar development than wind development. Further analysis in this paper will focus solely on solar due to wind's lower potential. Land sensitivity and ownership are used to assess the feasibility of development. There are many groupings of highly ranked land across the state, but the largest stretch of land runs from outside of Marana (south-central Arizona) northwest to about 60 miles west of Wickenburg (central-west). This regions is mainly on BLM, state, and privately owned land. Some of this land is considered sensitive, but non-sensitive areas with high potential are frequent throughout. Renewable potential in other states could be determined using this tool as well. Variables could be weighted or added depending on each area's need.
ContributorsZeck, Kevin Michael (Author) / Fraser, Matthew (Thesis director) / Pasqualetti, Martin (Committee member) / Cowger, Lane (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2013-05