Matching Items (30)
Filtering by

Clear all filters

152207-Thumbnail Image.png
Description
Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis,

Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis, where CO2 benefits occurring during use of the PV panels is found to exceed emissions generated during the PV manufacturing phase including materials extraction and manufacture of the PV panels prior to installation. However, this approach neglects to recognize that the environmental costs of CO2 release during manufacture are incurred early, while environmental benefits accrue later. Thus, where specific policy targets suggest meeting CO2 reduction targets established by a certain date, rapid PV deployment may have counter-intuitive, albeit temporary, undesired consequences. Thus, on a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood. This phenomenon is particularly acute when PV manufacture occurs in areas using CO2 intensive energy sources (e.g., coal), but deployment occurs in areas with less CO2 intensive electricity sources (e.g., hydro). This thesis builds a dynamic Cumulative Radiative Forcing (CRF) model to examine the inter-temporal warming impacts of PV deployments in three locations: California, Wyoming and Arizona. The model includes the following factors that impact CRF: PV deployment rate, choice of PV technology, pace of PV technology improvements, and CO2 intensity in the electricity mix at manufacturing and deployment locations. Wyoming and California show the highest and lowest CRF benefits as they have the most and least CO2 intensive grids, respectively. CRF payback times are longer than CO2 payback times in all cases. Thin film, CdTe PV technologies have the lowest manufacturing CO2 emissions and therefore the shortest CRF payback times. This model can inform policies intended to fulfill time-sensitive CO2 mitigation goals while minimizing short term radiative forcing.
ContributorsTriplican Ravikumar, Dwarakanath (Author) / Seager, Thomas P (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Chester, Mikhail V (Committee member) / Sinha, Parikhit (Committee member) / Arizona State University (Publisher)
Created2013
151973-Thumbnail Image.png
Description
Cities around the globe struggle with socio-economic disparities, resource inefficiency, environmental contamination, and quality-of-life challenges. Technological innovation, as one prominent approach to problem solving, promises to address these challenges; yet, introducing new technologies, such as nanotechnology, into society and cities has often resulted in negative consequences. Recent research has conceptually

Cities around the globe struggle with socio-economic disparities, resource inefficiency, environmental contamination, and quality-of-life challenges. Technological innovation, as one prominent approach to problem solving, promises to address these challenges; yet, introducing new technologies, such as nanotechnology, into society and cities has often resulted in negative consequences. Recent research has conceptually linked anticipatory governance and sustainability science: to understand the role of technology in complex problems our societies face; to anticipate negative consequences of technological innovation; and to promote long-term oriented and responsible governance of technologies. This dissertation advances this link conceptually and empirically, focusing on nanotechnology and urban sustainability challenges. The guiding question for this dissertation research is: How can nanotechnology be innovated and governed in responsible ways and with sustainable outcomes? The dissertation: analyzes the nanotechnology innovation process from an actor- and activities-oriented perspective (Chapter 2); assesses this innovation process from a comprehensive perspective on sustainable governance (Chapter 3); constructs a small set of future scenarios to consider future implications of different nanotechnology governance models (Chapter 4); and appraises the amenability of sustainability problems to nanotechnological interventions (Chapter 5). The four studies are based on data collected through literature review, document analysis, participant observation, interviews, workshops, and walking audits, as part of process analysis, scenario construction, and technology assessment. Research was conducted in collaboration with representatives from industry, government agencies, and civic organizations. The empirical parts of the four studies focus on Metropolitan Phoenix. Findings suggest that: predefined mandates and economic goals dominate the nanotechnology innovation process; normative responsibilities identified by risk governance, sustainability-oriented governance, and anticipatory governance are infrequently considered in the nanotechnology innovation process; different governance models will have major impacts on the role and effects of nanotechnology in cities in the future; and nanotechnologies, currently, do not effectively address the root causes of urban sustainability challenges and require complementary solution approaches. This dissertation contributes to the concepts of anticipatory governance and sustainability science on how to constructively guide nanotechnological innovation in order to harvest its positive potential and safeguard against negative consequences.
ContributorsFoley, Rider Williams (Author) / Wiek, Arnim (Thesis advisor) / Guston, David H. (Committee member) / Seager, Thomas P (Committee member) / Minteer, Ben A (Committee member) / Arizona State University (Publisher)
Created2013
151673-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the

Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the cases of emerging technologies, where data is unavailable and rapid technological advances outstrip environmental knowledge. Previous studies have demonstrated several shortcomings to existing practices, including the masking of environmental impacts, the difficulty of selecting appropriate weight sets for multi-stakeholder problems, and difficulties in exploration of variability and uncertainty. In particular, there is an acute need for decision-driven interpretation methods that can guide decision makers towards making balanced, environmentally sound decisions in instances of high uncertainty. We propose the first major methodological innovation in LCA since early establishment of LCA as the analytical perspective of choice in problems of environmental management. We propose to couple stochastic multi-criteria decision analytic tools with existing approaches to inventory building and characterization to create a robust approach to comparative technology assessment in the context of high uncertainty, rapid technological change, and evolving stakeholder values. Namely, this study introduces a novel method known as Stochastic Multi-attribute Analysis for Life Cycle Impact Assessment (SMAA-LCIA) that uses internal normalization by means of outranking and exploration of feasible weight spaces.
ContributorsPrado, Valentina (Author) / Seager, Thomas P (Thesis advisor) / Landis, Amy E. (Committee member) / Chester, Mikhail (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2013
137196-Thumbnail Image.png
Description
As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles

As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles can generate small amounts of electricity, the idea behind this project was to expand energy generation into the more common weight lifting side of exercising. The method for solving this problem was to find the average amount of power generated per user on a Smith machine and determine how much power was available from an accompanying energy generator. The generator consists of three phases: a copper coil and magnet generator, a full wave bridge rectifying circuit and a rheostat. These three phases working together formed a fully functioning controllable generator. The resulting issue with the kinetic energy generator was that the system was too inefficient to serve as a viable system for electricity generation. The electrical production of the generator only saved about 2 cents per year based on current Arizona electricity rates. In the end it was determined that the project was not a sustainable energy generation system and did not warrant further experimentation.
ContributorsO'Halloran, Ryan James (Author) / Middleton, James (Thesis director) / Hinrichs, Richard (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / The Design School (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
137557-Thumbnail Image.png
DescriptionExplore the implications that both sustainability and branding have on the built environment in order to develop a health an wellness center that promotes a balanced lifestyle for two targets users, which are of entirely different demographics.
ContributorsRachford, Paris Kristen (Author) / Shraiky, James (Thesis director) / Brandt, Beverly (Committee member) / Thomson, Eric (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor)
Created2013-05
147634-Thumbnail Image.png
Description

An exploration of how architecture can react to American hyper-consumption of clothing products. With the goal to raise public awareness and create systemic, sustainable change in the fashion industry, this project synthesizes each part of manufacturing, including production, consumption, and post consumption, into one local campus. By bringing manufacturing back

An exploration of how architecture can react to American hyper-consumption of clothing products. With the goal to raise public awareness and create systemic, sustainable change in the fashion industry, this project synthesizes each part of manufacturing, including production, consumption, and post consumption, into one local campus. By bringing manufacturing back into the daily rhythms of an urban context and combining a prototypical mix of fashion related programs, ethically minded consumers are formed.

ContributorsMarshall, Jordan (Author) / Murff, Warren (Thesis director) / Smith, Brie (Committee member) / Hejduk, Renata (Committee member) / School of Sustainability (Contributor) / The Design School (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Our current water usage practices and consumption have run us into dire need for change: our over-usage from the Colorado River and depletion of groundwater resources have led us to draw out more than we can replenish, and this cycle is becoming increasingly more expensive.A solution to this from an

Our current water usage practices and consumption have run us into dire need for change: our over-usage from the Colorado River and depletion of groundwater resources have led us to draw out more than we can replenish, and this cycle is becoming increasingly more expensive.A solution to this from an architectural standpoint is to have the building work with the natural hydrological cycle of its respective site. In doing so, the building will not only benefit the environment of its site, but will provide the public with education on the need for greater
conservation.
This thesis project first looks to the Living Building Challenge’s Water Petal framework as standards for this building to follow. The framework outlines that the building needs to be water positive, meaning all the water needs to be taken from the environment, run through the building, and discharged back out into the environment in a safe manner that benefits the local environment. To begin my research, I first looked to case studies of buildings that incorporate elements of the hydrological cycles of their sites, studying how these buildings function
efficiently without causing damage or depleting resources. The project then goes onto analyze the site on which the building will sit. The prototype building is located in Papago Park, facing the Papago Buttes. The building itself is a meditation pavilion, providing a place for visitors to rest and enjoy the beauty of the natural landscape.
In terms of the water systems at work in the building, the project acquires water through several means. The first is through rain, in which the building catches rainwater on slanted planes of the roof as well as through a ground filtration system within the landscaped zones surrounding the building. The water filters through the soil, through multiple filters and eventually to a large storage tank below. Water is also collected using existing bioswales lining the nearby canal to harness water as part of the building system. This water is also filtered and sent to the storage tank. Because of the weather patterns we have here in Arizona, the storage tank is very large, needing to hold about 3,000 gallons of water. This water is then ready to be used by toilets or irrigation, or treated one step further through the process of ozonation to be used for sinks and drinking fountains. The blackwater, or sewage water, then gets pumped through a
membrane bioreactor in which sludge is sent to an anearobic digester and the remaining water continues to a constructed wetland where it ends its journey. Along the way, this water is pumped through a shallow channel in the ground in which people within the building can view as it makes its way out to the wetland. Upon reaching the wetland, the water will eventually seep back into the ground, replenishing the natural water table and thus completing the full loop cycle
of the project.
ContributorsLentz, Katelyn Emiko (Author) / Bernardi, Jose (Thesis director) / Bochart, Sonja (Committee member) / Maria, Miller (Committee member) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132932-Thumbnail Image.png
Description
College and university campuses can play an important role in a student’s life, and campus outdoor spaces have the ability to positively impact various aspects of student health and well-being. It has long been understood that natural environments can promote health and well being, and in recent years research has

College and university campuses can play an important role in a student’s life, and campus outdoor spaces have the ability to positively impact various aspects of student health and well-being. It has long been understood that natural environments can promote health and well being, and in recent years research has begun to examine the impact of parks and landscapes in urban settings on subjective well-being (SWB). Subjective well-being (aka “happiness”) refers to
one’s self-reported measure of well-being and is thought of as having a high level of positive affect, low level of negative affect, and high degree of life satisfaction (Diener, 1984).

This study was conducted to assess the interrelationships between affective experiences, SWB, and usage of campus outdoor spaces in order to learn how outdoor spaces on the Arizona State University (ASU) Tempe campus can be enhanced to increase SWB and usage. In total, 832 students completed a survey questionnaire 1,140 times for six campus outdoor spaces. The results showed that students experience the greatest amount of happiness in the Secret Garden
and James Turrell ASU Skyspace, relaxation/restoration is the affective experience most strongly related to SWB, and SWB is negatively correlated with frequency of visits but positively link with duration of visits. To improve student happiness and usage of outdoor spaces on campuses, planners and designers should work on increasing the relaxing/restorative qualities of existing
locations, creating new spaces for relaxation/restoration around campus, reducing the perception of crowding and noise in large spaces, increasing fun/excitement by adding stimuli and/or opportunities for activity and entertainment, and adding equipment necessary for students to perform the activities they want. In addition to the ASU Tempe campus, the methodology and
findings of this research could be used to improve outdoor spaces on other college and university campuses and other types of outdoor environments.
ContributorsDavis, Kara (Author) / Cheng, Chingwen (Thesis director) / Cloutier, Scott (Committee member) / School of Sustainability (Contributor) / Dean, W.P. Carey School of Business (Contributor) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133233-Thumbnail Image.png
Description
The suburbs provoke a deeply polarized reaction, more so than most other components of the urban landscape. Those who live in the suburbs often love them for their quietude and their spaciousness, even while urban designers lament suburban sprawl. Regardless, suburbs are deeply entrenched in patterns of American urban land

The suburbs provoke a deeply polarized reaction, more so than most other components of the urban landscape. Those who live in the suburbs often love them for their quietude and their spaciousness, even while urban designers lament suburban sprawl. Regardless, suburbs are deeply entrenched in patterns of American urban land use, so an evolution to more sustainable land use will require incremental changes to suburban landscapes. The purpose of this project is twofold: one, to design a transition to a more sustainable landscape for an HOA in Gilbert, Arizona; and two, to abstract the process of designing this transition so that it can be applied on a larger scale.
ContributorsRonczy, Patricia Sophia (Author) / Coseo, Paul (Thesis director) / Hargrove, Allyce (Committee member) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133269-Thumbnail Image.png
Description
The trends of products made by today’s companies follow a traditional linear economy where materials for products and services are taken, made, and then used until they are disposed of. In this model cheap materials are relied on in large amounts and our current rate of usage is unsustainable. Pollution

The trends of products made by today’s companies follow a traditional linear economy where materials for products and services are taken, made, and then used until they are disposed of. In this model cheap materials are relied on in large amounts and our current rate of usage is unsustainable. Pollution and climate change are effects of this linear economy, and in order to secure a sustainable future for life on this planet, this model is not fit. A circular business model is the future for companies and products. Circular design and biomimicry are at the forefront of this transition. In conjuncture with the InnovationSpace program, I have developed a product for, and sponsored by, Adidas. The product utilizes a circular business model and a sustainable product ecosystem after using biomimicry as a tool for inspiration. The project was driven by this primary research question presented by Adidas: How can we embrace a true circular economy with far more reuse and recycling incorporated, while ensuring that all products travel from factory to foot in a more sustainable way while providing an engaging consumer experience? The goal
of this project was to generate solutions that can be applied to a broad range of products at Adidas.
The product developed is called Neomod, a modular shoe system. People buy shoes both for fashion and function, with the average American owning nineteen pairs. However, countless numbers of partially worn shoes end up in landfills because the materials they are made of are difficult to separate and replace. This is why we designed Neomod; a modular shoe made with interchangeable parts. It makes recycling shoes simpler, but at the same time, provides users with a variety of styles to mix and match to fit their lifestyle. Neomod’s goal is to minimize the amount of waste created and allows all parts of the shoe to be used until its end of life. As consumers buy, recycle, and reuse Neomod shoes, they will help the world work towards a more circular economy.
ContributorsReniewicki, Johnathan Robert (Author) / Sanft, Alfred (Thesis director) / Boradkar, Prasad (Committee member) / The Design School (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05