Matching Items (2)
Filtering by

Clear all filters

191490-Thumbnail Image.png
Description
With the demand growing for more sustainable forms of energy in replacement of fossil fuels, a major obstacle arises in the end-of life solar modules that are disposed of in landfills. Aside from the hazardous materials, silicon solar modules contain valuable and scarce materials such as silver. Silver is used

With the demand growing for more sustainable forms of energy in replacement of fossil fuels, a major obstacle arises in the end-of life solar modules that are disposed of in landfills. Aside from the hazardous materials, silicon solar modules contain valuable and scarce materials such as silver. Silver is used in many industries and many applications therefore the recycling and recovering of it is financially beneficial. The purpose of this research was to achieve high purity and recovery of silver using hydrofluoric acid. The following work presents the feasibility of silver recovery through the process of leaching and electrowinning by examining the percent recovery and cathodic coulombic efficiency, followed by a chemical analysis to determine the purity. Varying conditions in leaching and electrowinning parameters are conducted in a synthetic solution to determine the effect on silver recovery and cathodic coulombic efficiency. It was determined that the silver recovery was dependent on the applied potential, system configuration and time. The system is capable of recovery rates of over 95% at -1 V. The system is further tested on solar cells to prove that silver can be recovered. There was over 99% purity from the experiments conducted in synthetic solution and from solar cells. Additionally, a circular chemistry is proposed that allows the reuse of hydrofluoric acid for leaching and electrowinning.
ContributorsChen, Theresa (Author) / Tao, Meng (Thesis advisor) / Deng, Shuguang (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2024
155063-Thumbnail Image.png
Description
Photovoltaics (PV) is an environmentally promising technology to meet climate goals and transition away from greenhouse-gas (GHG) intensive sources of electricity. The dominant approach to improve the environmental gains from PV is increasing the module efficiency and, thereby, the renewable electricity generated during use. While increasing the use-phase environmental benefits,

Photovoltaics (PV) is an environmentally promising technology to meet climate goals and transition away from greenhouse-gas (GHG) intensive sources of electricity. The dominant approach to improve the environmental gains from PV is increasing the module efficiency and, thereby, the renewable electricity generated during use. While increasing the use-phase environmental benefits, this approach doesn’t address environmentally intensive PV manufacturing and recycling processes.

Lifecycle assessment (LCA), the preferred framework to identify and address environmental hotspots in PV manufacturing and recycling, doesn’t account for time-sensitive climate impact of PV manufacturing GHG emissions and underestimates the climate benefit of manufacturing improvements. Furthermore, LCA is inherently retrospective by relying on inventory data collected from commercial-scale processes that have matured over time and this approach cannot evaluate environmentally promising pilot-scale alternatives based on lab-scale data. Also, prospective-LCAs that rely on hotspot analysis to guide future environmental improvements, (1) don’t account for stake-holder inputs to guide environmental choices in a specific decision context, and (2) may fail in a comparative context where the mutual differences in the environmental impacts of the alternatives and not the environmental hotspots of a particular alternative determine the environmentally preferable alternative

This thesis addresses the aforementioned problematic aspects by (1)using the time-sensitive radiative-forcing metric to identify PV manufacturing improvements with the highest climate benefit, (2)identifying the environmental hotspots in the incumbent CdTe-PV recycling process, and (3)applying the anticipatory-LCA framework to identify the most environmentally favorable alternative to address the recycling hotspot and significant stakeholder inputs that can impact the choice of the preferred recycling alternative.

The results show that using low-carbon electricity is the most significant PV manufacturing improvement and is equivalent to increasing the mono-Si and multi-Si module efficiency from a baseline of 17% to 21.7% and 16% to 18.7%, respectively. The elimination of the ethylene-vinyl acetate encapsulant through mechanical and chemical processes is the most significant environmental hotspot for CdTe PV recycling. Thermal delamination is the most promising environmental alternative to address this hotspot. The most significant stake-holder input to influence the choice of the environmentally preferable recycling alternative is the weight assigned to the different environmental impact categories.
ContributorsTriplican Ravikumar, Dwarakanath (Author) / Seager, Thomas P (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Chester, Mikhail (Committee member) / Sinha, Parikhit (Committee member) / Tao, Meng (Committee member) / Arizona State University (Publisher)
Created2016