Matching Items (6)
Filtering by

Clear all filters

151944-Thumbnail Image.png
Description
The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom-

The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom- etry. Detailed numerical simulations can offer better understanding of the underlying physical mechanisms that lead to the breakup of the injected liquid jet. In this work, detailed numerical simulation results of turbulent liquid jets injected into turbulent gaseous cross flows for different density ratios is presented. A finite volume, balanced force fractional step flow solver to solve the Navier-Stokes equations is employed and coupled to a Refined Level Set Grid method to follow the phase interface. To enable the simulation of atomization of high density ratio fluids, we ensure discrete consistency between the solution of the conservative momentum equation and the level set based continuity equation by employing the Consistent Rescaled Momentum Transport (CRMT) method. The impact of different inflow jet boundary conditions on different jet properties including jet penetration is analyzed and results are compared to those obtained experimentally by Brown & McDonell(2006). In addition, instability analysis is performed to find the most dominant insta- bility mechanism that causes the liquid jet to breakup. Linear instability analysis is achieved using linear theories for Rayleigh-Taylor and Kelvin- Helmholtz instabilities and non-linear analysis is performed using our flow solver with different inflow jet boundary conditions.
ContributorsGhods, Sina (Author) / Herrmann, Marcus (Thesis advisor) / Squires, Kyle (Committee member) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Tang, Wenbo (Committee member) / Arizona State University (Publisher)
Created2013
189204-Thumbnail Image.png
Description
Computing the fluid phase interfaces in multiphase flow is a challenging area of research in fluids. The Volume of Fluid andLevel Set methods are a few algorithms that have been developed for reconstructing the multiphase fluid flow interfaces. The thesis work focuses on exploring the ability of neural networks to reconstruct

Computing the fluid phase interfaces in multiphase flow is a challenging area of research in fluids. The Volume of Fluid andLevel Set methods are a few algorithms that have been developed for reconstructing the multiphase fluid flow interfaces. The thesis work focuses on exploring the ability of neural networks to reconstruct the multiphase fluid flow interfaces using a data-driven approach. The neural network model has liquid volume fraction stencils as an input, and it predicts the radius of the circle as an output of the network which represents a phase interface separating two immiscible fluids inside a fluid domain. The liquid volume fraction stencils are generated for randomly varying circle radii within a 1x1 domain using an open-source VOFI library. These datasets are used to train the neural network. Once the model is trained, the predicted circular phase interface from the neural network output is used to generate back the predicted liquid volume fraction stencils. Error norms values are calculated to assess the error in the neural network model’s predicted liquid volume fraction stencils with the actual liquid volume fraction stencils from the VOFI library. The neural network parameters are optimized by testing them for different hyper-parameters to reduce the error norms. So as to minimize the difference between the predicted and the actual liquid volume fraction stencils and errors in reconstructing the fluid phase interface geometry.
ContributorsPawar, Pranav Rajesh (Author) / Herrmann, Marcus (Thesis advisor) / Zhuang, Houlong (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2023
193663-Thumbnail Image.png
Description
This dissertation presents a volume filtering framework to solve particle-laden flows. Particle-laden flows are studied, employing the well-established Euler-Lagrange method, using the point-particle approximation. This approach requires the filter width to be much larger than the particle diameter. The method assumes that the particle is smaller than the Kolmogorov length

This dissertation presents a volume filtering framework to solve particle-laden flows. Particle-laden flows are studied, employing the well-established Euler-Lagrange method, using the point-particle approximation. This approach requires the filter width to be much larger than the particle diameter. The method assumes that the particle is smaller than the Kolmogorov length scale. This thesis investigates how inertial particles at semi-dilute volume fractions modulate the flow characteristics for particles smaller than 1 in wall units, when dispersed within wall-bounded channel flows at friction Reynolds number of 180. The simulations are performed with 4 way coupling in order to account for high local concentration of particles, to capture mechanisms such as turbophoresis and preferential concentration. We show that drag attenuation or augmentation is determined by the particle inertia. As particle size is increased greater than 1 in wall units, the regime becomes finite-sized, requiring an interface-resolved description. To do this a novel Immersed Boundaries (IB) framework based on the concept of volume-filtering called the Volume-Filtered Immersed Boundary (VF-IB) method is presented. Transport equations are obtained by volume-filtering the Navier-Stokes equation and accounting for the stresses at the solid-fluid interface. Boundary conditions are transformed into bodyforces that appear as surface integrals on the right hand side of the filtered equation. The approach requires the filter width to be much smaller than the particle diameter in order to accurately resolve the interfacial dynamics. Several canonical tests are conducted for both stationary and moving immersed solids and report comparable results to the experimental and/or body-fitted simulations. Keep in mind, the VF-IB method reverts back to the Euler-Lagrange formulation if the filter width is significantly greater than the particle diameter. An artifact of volume-filtering is the emergence of unclosed terms we define as the sub-filter scale term. In order to characterize the contribution of this term on the solution, a more simpler case of a 2-D varying coefficient hyperbolic equation that has an exact solution is looked into. It is observed that the sub-filter scale term scales inversely with the square of the filter width. For fine interface resolution (i.e. small filter width), this value can be ignored with negligible effect to the accuracy of the numerical solution. However for coarse interface resolution (i.e. large filter width), including the sub-filter scale term significantly increases the accuracy of the numerical solution
ContributorsDave, Himanshu (Author) / Kasbaoui, Mohamed Houssem (Thesis advisor) / Herrmann, Marcus (Thesis advisor) / Dahm, Werner (Committee member) / Kim, Jeonglae (Committee member) / Lopez, Juan (Committee member) / Arizona State University (Publisher)
Created2024
165177-Thumbnail Image.png
Description

An interface reconstruction algorithm for the Volume of Fluid (VOF) method is required for two-phase flow problems for advection of phase interface. The primary method for interface reconstruction has been through piecewise linear interface calculation (PLIC) reconstruction. However, while PLIC reconstruction is highly accurate at representing small curvature interfaces by

An interface reconstruction algorithm for the Volume of Fluid (VOF) method is required for two-phase flow problems for advection of phase interface. The primary method for interface reconstruction has been through piecewise linear interface calculation (PLIC) reconstruction. However, while PLIC reconstruction is highly accurate at representing small curvature interfaces by approximating planes across multiple grid cells, accuracy problems arise when the size of the mesh is too coarse to accurately approximate a large curvature without resorting to refining the mesh. An elliptic interface reconstructing algorithm is explored for two-phase flow problems in 2D to determine the viability of a higher-order interface reconstruction algorithm. This requires first developing an area overlap function between an arbitrary triangle and ellipse, which is then extended to calculate the area fraction field of an ellipse within a mesh. Then, the "reverse" problem of elliptic interface reconstruction given an area fraction field is examined. A study is conducted to determine the presence of any local minimums when varying the ellipse parameters. In the future, a multi-dimensional root-finding solver using Newton's Method will be developed to properly reconstruct the elliptic interface given the area fraction field.

ContributorsLee, Chase (Author) / Herrmann, Marcus (Thesis director) / Kasbaoui, Mohamed (Committee member) / Wells, Valana (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
153954-Thumbnail Image.png
Description
Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the

Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.
ContributorsPendota, Premchand (Author) / Herrmann, Marcus (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
Description
Increasing computational demands in data centers require facilities to operate at higher ambient temperatures and at higher power densities. Conventionally, data centers are cooled with electrically-driven vapor-compressor equipment. This paper proposes an alternative data center cooling architecture that is heat-driven. The source is heat produced by the computer equipment. This

Increasing computational demands in data centers require facilities to operate at higher ambient temperatures and at higher power densities. Conventionally, data centers are cooled with electrically-driven vapor-compressor equipment. This paper proposes an alternative data center cooling architecture that is heat-driven. The source is heat produced by the computer equipment. This dissertation details experiments investigating the quantity and quality of heat that can be captured from a liquid-cooled microprocessor on a computer server blade from a data center. The experiments involve four liquid-cooling setups and associated heat-extraction, including a radical approach using mineral oil. The trials examine the feasibility of using the thermal energy from a CPU to drive a cooling process. Uniquely, the investigation establishes an interesting and useful relationship simultaneously among CPU temperatures, power, and utilization levels. In response to the system data, this project explores the heat, temperature and power effects of adding insulation, varying water flow, CPU loading, and varying the cold plate-to-CPU clamping pressure. The idea is to provide an optimal and steady range of temperatures necessary for a chiller to operate. Results indicate an increasing relationship among CPU temperature, power and utilization. Since the dissipated heat can be captured and removed from the system for reuse elsewhere, the need for electricity-consuming computer fans is eliminated. Thermocouple readings of CPU temperatures as high as 93°C and a calculated CPU thermal energy up to 67Wth show a sufficiently high temperature and thermal energy to serve as the input temperature and heat medium input to an absorption chiller. This dissertation performs a detailed analysis of the exergy of a processor and determines the maximum amount of energy utilizable for work. Exergy as a source of realizable work is separated into its two contributing constituents: thermal exergy and informational exergy. The informational exergy is that usable form of work contained within the most fundamental unit of information output by a switching device within a CPU. Exergetic thermal, informational and efficiency values are calculated and plotted for our particular CPU, showing how the datasheet standards compare with experimental values. The dissertation concludes with a discussion of the work's significance.
ContributorsHaywood, Anna (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Gupta, Sandeep (Committee member) / Trimble, Steve (Committee member) / Myhajlenko, Stefan (Committee member) / Arizona State University (Publisher)
Created2014