Matching Items (3)
Filtering by

Clear all filters

Description

While the definition of sustainability remains open for all to contribute to and participate in, there do seem to be some notions it has come to embody that should not be neglected as the definition coalesces. Among these are the ethical and social dimensions of sustainability. Whether or not it

While the definition of sustainability remains open for all to contribute to and participate in, there do seem to be some notions it has come to embody that should not be neglected as the definition coalesces. Among these are the ethical and social dimensions of sustainability. Whether or not it is appropriate, required, or even desirable, concepts like social equity, human rights, ethical sharing of commons, etc. have increasingly come under the umbrella of the sustainability discourse. Even if “sustainability” as a bare word doesn’t imply those things, the concept of sustainable development certainly has taken on those dimensions. That sustainability might be redefined or re-scoped to be a purely environmental or a rigidly scientific endeavor, is not an immediate concern of this paper, though if that were to occur (whether for the sake of simplicity or pragmatics), it should be done explicitly so the ethical sub-discourse can be maintained (indeed, sustained) by some other movement.

This paper proposes a mechanism by which such a migration in terms can be prevented. First, in reviewing the work of Denis Goulet, it shows the solid basis for including an ethical aspect in the sustainability discourse. Second, it points out that Karl-Henrik Robèrt’s highly-lauded and broadly-employed sustainability framework, The Natural Step, is deficient in this area. This deficiency provides the impetus for, finally, proposing a mechanism by which The Natural Step can be extended to include the important social and ethical dimensions of sustainability. This mechanism is based on the capabilities approaches that, in many respects, evolved out of Goulet’s early work. Augmented accordingly, TNS can continue to be used without fear of overlooking the social and ethical aspects of the sustainability discourse.

141370-Thumbnail Image.png
Description

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? Research demonstrates that vulnerability is

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? Research demonstrates that vulnerability is registered not by exposure to hazards (perturbations and stresses) alone but also resides in the sensitivity and resilience of the system experiencing such hazards. This recognition requires revisions and enlargements in the basic design of vulnerability assessments, including the capacity to treat coupled human–environment systems and those linkages within and without the systems that affect their vulnerability. A vulnerability framework for the assessment of coupled human–environment systems is presented.

Research on global environmental change has significantly improved our understanding of the structure and function of the biosphere and the human impress on both (1). The emergence of “sustainability science” (2–4) builds toward an understanding of the human–environment condition with the dual objectives of meeting the needs of society while sustaining the life support systems of the planet. These objectives, in turn, require improved dialogue between science and decision making (5–8). The vulnerability of coupled human–environment systems is one of the central elements of this dialogue and sustainability research (6, 9–11). It directs attention to such questions as: Who and what are vulnerable to the multiple environmental and human changes underway, and where? How are these changes and their consequences attenuated or amplified by different human and environmental conditions? What can be done to reduce vulnerability to change? How may more resilient and adaptive communities and societies be built?

Answers to these and related questions require conceptual frameworks that account for the vulnerability of coupled human–environment systems with diverse and complex linkages. Various expert communities have made considerable progress in pointing the way toward the design of these frameworks (10, 11). These advances are briefly reviewed here and, drawing on them, we present a conceptual framework of vulnerability developed by the Research and Assessment Systems for Sustainability Program (http://sust.harvard.edu) that produced the set of works in this Special Feature of PNAS. The framework aims to make vulnerability analysis consistent with the concerns of sustainability and global environmental change science. The case study by Turner et al. (12) in this issue of PNAS illustrates how the framework informs vulnerability assessments.

ContributorsTurner II, B. L. (Author) / Kasperson, Roger E. (Author) / Matson, Pamela A. (Author) / McCarthy, James J. (Author) / Corell, Robert W. (Author) / Christensen, Lindsey (Author) / Eckley, Noelle (Author) / Kasperson, Jeanne X. (Author) / Luers, Amy (Author) / Martello, Marybeth L. (Author) / Polsky, Colin (Author) / Pulsipher, Alexander (Author) / Schiller, Andrew (Author)
Created2003-03-07
141383-Thumbnail Image.png
Description

Transitions towards sustainability are urgently needed to address the interconnected challenges of economic development, ecological integrity, and social justice, from local to global scales. Around the world, collaborative science-society initiatives are forming to conduct experiments in support of sustainability transitions. Such experiments, if carefully designed, provide significant learning opportunities for

Transitions towards sustainability are urgently needed to address the interconnected challenges of economic development, ecological integrity, and social justice, from local to global scales. Around the world, collaborative science-society initiatives are forming to conduct experiments in support of sustainability transitions. Such experiments, if carefully designed, provide significant learning opportunities for making progress on transition efforts. Yet, there is no broadly applicable evaluative scheme available to capture this critical information across a large number of cases, and to guide the design of transition experiments. To address this gap, the article develops such a scheme, in a tentative form, drawing on evaluative research and sustainability transitions scholarship, alongside insights from empirical cases. We critically discuss the scheme's key features of being generic, comprehensive, operational, and formative. Furthermore, we invite scholars and practitioners to apply, reflect and further develop the proposed tentative scheme – making evaluation and experiments objects of learning.

ContributorsLuederitz, Christopher (Author) / Schäpke, Niko (Author) / Wiek, Arnim (Author) / Lang, Daniel J. (Author) / Bergmann, Matthias (Author) / Bos, Joannette J (Author) / Burch, Sarah (Author) / Davies, Anna (Author) / Evans, James (Author) / König, Ariane (Author) / Farrelly, Megan A. (Author) / Forrest, Nigel (Author) / Frantzeskaki, Niki (Author) / Gibson, Robert B. (Author) / Kay, Braden (Author) / Loorbach, Derk (Author) / McCormick, Kes (Author) / Parodi, Oliver (Author) / Rauschmayer, Felix (Author) / Schneidewind, Uwe (Author) / Stauffacher, Michael (Author) / Stelzer, Franziska (Author) / Trencher, Gregory (Author) / Venjakob, Johannes (Author) / Vergragt, Philip J. (Author) / von Wehrden, Henrik (Author) / Westley, Frances R. (Author)
Created2016-09-03