Matching Items (29)
Filtering by

Clear all filters

151951-Thumbnail Image.png
Description
The consumption of feedstocks from agriculture and forestry by current biofuel production has raised concerns about food security and land availability. In the meantime, intensive human activities have created a large amount of marginal lands that require management. This study investigated the viability of aligning land management with biofuel production

The consumption of feedstocks from agriculture and forestry by current biofuel production has raised concerns about food security and land availability. In the meantime, intensive human activities have created a large amount of marginal lands that require management. This study investigated the viability of aligning land management with biofuel production on marginal lands. Biofuel crop production on two types of marginal lands, namely urban vacant lots and abandoned mine lands (AMLs), were assessed. The investigation of biofuel production on urban marginal land was carried out in Pittsburgh between 2008 and 2011, using the sunflower gardens developed by a Pittsburgh non-profit as an example. Results showed that the crops from urban marginal lands were safe for biofuel. The crop yield was 20% of that on agricultural land while the low input agriculture was used in crop cultivation. The energy balance analysis demonstrated that the sunflower gardens could produce a net energy return even at the current low yield. Biofuel production on AML was assessed from experiments conducted in a greenhouse for sunflower, soybean, corn, canola and camelina. The research successfully created an industrial symbiosis by using bauxite as soil amendment to enable plant growth on very acidic mine refuse. Phytoremediation and soil amendments were found to be able to effectively reduce contamination in the AML and its runoff. Results from this research supported that biofuel production on marginal lands could be a unique and feasible option for cultivating biofuel feedstocks.
ContributorsZhao, Xi (Author) / Landis, Amy (Thesis advisor) / Fox, Peter (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2013
151783-Thumbnail Image.png
Description
The United Nation's Framework Convention on Climate Change (UNFCCC) recognizes development as a priority for carbon dioxide (CO2) allocation, under its principle of "common but differentiated responsibilities". This was codified in the Kyoto Protocol, which exempt developing nations from binding emission reduction targets. Additionally, they could be the recipients of

The United Nation's Framework Convention on Climate Change (UNFCCC) recognizes development as a priority for carbon dioxide (CO2) allocation, under its principle of "common but differentiated responsibilities". This was codified in the Kyoto Protocol, which exempt developing nations from binding emission reduction targets. Additionally, they could be the recipients of financed sustainable development projects in exchange for emission reduction credits that the developed nations could use to comply with emission targets. Due to ineffective results, post-Kyoto policy discussions indicate a transition towards mitigation commitments from major developed and developing emitters, likely supplemented by market-based mechanisms to reduce mitigation costs. Although the likelihood of achieving substantial emission reductions is increased by the new plan, there is a paucity of consideration to how an ethic of development might be advanced. Therefore, this research empirically investigates the role that CO2 plays in advancing human development (in terms of the Human Development Index or HDI) over the 1990 to 2010 time period. Based on empirical evidence, a theoretical CO2-development framework is established, which provides a basis for designing a novel policy proposal that integrates mitigation efforts with human development objectives. Empirical evidence confirms that CO2 and HDI are highly correlated, but that there are diminishing returns to HDI as per capita CO2 emissions increase. An examination of development pathways reveals that as nations develop, their trajectories generally become less coupled with CO2. Moreover, the developing countries with the greatest gains in HDI are also nations that have, or are in the process of moving toward, outward-oriented trade policies that involve increased domestic capabilities for product manufacture and export. With these findings in mind, future emission targets should reduce current emissions in developed nations and allow room for HDI growth in developing countries as well as in the least developed nations of the world. Emission trading should also be limited to nations with similar HDI levels to protect less-developed nations from unfair competition for capacity building resources. Lastly, developed countries should be incentivized to invest in joint production ventures within the LDCs to build capacity for self-reliant and sustainable development over the long-term.
ContributorsClark, Susan Spierre (Author) / Seager, Thomas P. (Thesis advisor) / Allenby, Braden (Committee member) / Klinsky, Sonja (Committee member) / Arizona State University (Publisher)
Created2013
151673-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the

Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the cases of emerging technologies, where data is unavailable and rapid technological advances outstrip environmental knowledge. Previous studies have demonstrated several shortcomings to existing practices, including the masking of environmental impacts, the difficulty of selecting appropriate weight sets for multi-stakeholder problems, and difficulties in exploration of variability and uncertainty. In particular, there is an acute need for decision-driven interpretation methods that can guide decision makers towards making balanced, environmentally sound decisions in instances of high uncertainty. We propose the first major methodological innovation in LCA since early establishment of LCA as the analytical perspective of choice in problems of environmental management. We propose to couple stochastic multi-criteria decision analytic tools with existing approaches to inventory building and characterization to create a robust approach to comparative technology assessment in the context of high uncertainty, rapid technological change, and evolving stakeholder values. Namely, this study introduces a novel method known as Stochastic Multi-attribute Analysis for Life Cycle Impact Assessment (SMAA-LCIA) that uses internal normalization by means of outranking and exploration of feasible weight spaces.
ContributorsPrado, Valentina (Author) / Seager, Thomas P (Thesis advisor) / Landis, Amy E. (Committee member) / Chester, Mikhail (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2013
152588-Thumbnail Image.png
Description
A methodology is developed that integrates institutional analysis with Life Cycle Assessment (LCA) to identify and overcome barriers to sustainability transitions and to bridge the gap between environmental practitioners and decisionmakers. LCA results are rarely joined with analyses of the social systems that control or influence decisionmaking and policies. As

A methodology is developed that integrates institutional analysis with Life Cycle Assessment (LCA) to identify and overcome barriers to sustainability transitions and to bridge the gap between environmental practitioners and decisionmakers. LCA results are rarely joined with analyses of the social systems that control or influence decisionmaking and policies. As a result, LCA conclusions generally lack information about who or what controls different parts of the system, where and when the processes' environmental decisionmaking happens, and what aspects of the system (i.e. a policy or regulatory requirement) would have to change to enable lower environmental impact futures. The value of the combined institutional analysis and LCA (the IA-LCA) is demonstrated using a case study of passenger transportation in the Phoenix, Arizona metropolitan area. A retrospective LCA is developed to estimate how roadway investment has enabled personal vehicle travel and its associated energy, environmental, and economic effects. Using regional travel forecasts, a prospective life cycle inventory is developed. Alternative trajectories are modeled to reveal future "savings" from reduced roadway construction and vehicle travel. An institutional analysis matches the LCA results with the specific institutions, players, and policies that should be targeted to enable transitions to these alternative futures. The results show that energy, economic, and environmental benefits from changes in passenger transportation systems are possible, but vary significantly depending on the timing of the interventions. Transition strategies aimed at the most optimistic benefits should include 1) significant land-use planning initiatives at the local and regional level to incentivize transit-oriented development infill and urban densification, 2) changes to state or federal gasoline taxes, 3) enacting a price on carbon, and 4) nearly doubling vehicle fuel efficiency together with greater market penetration of alternative fuel vehicles. This aggressive trajectory could decrease the 2050 energy consumption to 1995 levels, greenhouse gas emissions to 1995, particulate emissions to 2006, and smog-forming emissions to 1972. The potential benefits and costs are both private and public, and the results vary when transition strategies are applied in different spatial and temporal patterns.
ContributorsKimball, Mindy (Author) / Chester, Mikhail (Thesis advisor) / Allenby, Braden (Committee member) / Golub, Aaron (Committee member) / Arizona State University (Publisher)
Created2014
153423-Thumbnail Image.png
Description
As climate change becomes a greater challenge in today's society, it is critical to understand young people's perceptions of the phenomenon because they will become the next generation of decision-makers. This study examines knowledge, beliefs, and behaviors among high school students. The subjects of this study include students from high

As climate change becomes a greater challenge in today's society, it is critical to understand young people's perceptions of the phenomenon because they will become the next generation of decision-makers. This study examines knowledge, beliefs, and behaviors among high school students. The subjects of this study include students from high school science classes in Phoenix, Arizona, and Plainfield, Illinois. Using surveys and small group interviews to engage students in two climatically different locations, three questions were answered:

1) What do American students know and believe about climate change? How is knowledge related to beliefs?

2) What types of behaviors are students exhibiting that may affect climate change? How do beliefs relate to behavioral choices?

3) Do climate change knowledge, beliefs, and behaviors vary between geographic locations in the United States?

The results of this study begin to highlight the differences between knowledge, beliefs, and behaviors around the United States. First, results showed that students have heard of climate change but often confused aspects of the problem, and they tended to focus on causes and impacts, as opposed to solutions. Related to beliefs, students tended to believe that climate change is caused by both humans and natural trends, and would affect plant and animal species more than themselves and their families. Second, students were most likely to participate in individual behaviors such as turning off lights and electronics, and least likely to take public transportation and eat a vegetarian meal. Individual behaviors seem to be most relevant to this age group, in contrast to policy solutions. Third, students in Illinois felt they would be more likely to experience colder temperatures and more precipitation than those in Arizona, where students were more concerned about rising temperatures.

Understanding behaviors, motivations behind beliefs and choices, and barriers to actions can support pro-environmental behavior change. Educational strategies can be employed to more effectively account for the influences on a young person's belief formation and behavior choices. Providing engagement opportunities with location-specific solutions that are more feasible for youth to participate in on their own could also support efforts for behavior change.
ContributorsKruke, Laurel (Author) / Larson, Kelli (Thesis advisor) / Klinsky, Sonja (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2015
153406-Thumbnail Image.png
Description
Without scientific expertise, society may make catastrophically poor choices when faced with problems such as climate change. However, scientists who engage society with normative questions face tension between advocacy and the social norms of science that call for objectivity and neutrality. Policy established in 2011 by the Intergovernmental Panel on

Without scientific expertise, society may make catastrophically poor choices when faced with problems such as climate change. However, scientists who engage society with normative questions face tension between advocacy and the social norms of science that call for objectivity and neutrality. Policy established in 2011 by the Intergovernmental Panel on Climate Change (IPCC) required their communication to be objective and neutral and this research comprised a qualitative analysis of IPCC reports to consider how much of their communication is strictly factual (Objective), and value-free (Neutral), and to consider how their communication had changed from 1990 to 2013. Further research comprised a qualitative analysis of structured interviews with scientists and non-scientists who were professionally engaged in climate science communication, to consider practitioner views on advocacy. The literature and the structured interviews revealed a conflicting range of definitions for advocacy versus objectivity and neutrality. The practitioners that were interviewed struggled to separate objective and neutral science from attempts to persuade, and the IPCC reports contained a substantial amount of communication that was not strictly factual and value-free. This research found that science communication often blurred the distinction between facts and values, imbuing the subjective with the authority and credibility of science, and thereby damaging the foundation for scientific credibility. This research proposes a strict definition for factual and value-free as a means to separate science from advocacy, to better protect the credibility of science, and better prepare scientists to negotiate contentious science-based policy issues. The normative dimension of sustainability will likely entangle scientists in advocacy or the appearance of it, and this research may be generalizable to sustainability.
ContributorsMcClintock, Scott (Author) / Van Der Leeuw, Sander (Thesis advisor) / Klinsky, Sonja (Committee member) / Chhetri, Nalini (Committee member) / Hannah, Mark (Committee member) / Arizona State University (Publisher)
Created2015
153185-Thumbnail Image.png
Description
The rise of meat consumption in the United States has been dramatic over

the past half century due to demographic changes. The increase in meat is visible in Mexico as well due to expanding economic interest in cattle production plus increased population and rising incomes. The worst consequences of our modern

The rise of meat consumption in the United States has been dramatic over

the past half century due to demographic changes. The increase in meat is visible in Mexico as well due to expanding economic interest in cattle production plus increased population and rising incomes. The worst consequences of our modern food system are in factory farming of animals, which requires a greater amount of resources than for producing grains, fruits, and vegetables. The specific effects of meat consumption highlight the importance of understanding humans as actors in the food system. In order to explore the drivers of consumer food and meat choice, my research answered the two questions: What factors influence meat consumption? and How do cultural and social norms influence decisions to consume certain types and amounts of meat?

Qualitative interviews were conducted with Mexican-American respondents between age 20 and 29 as the population of interest because of their regional dominance in the study area of Tempe, AZ and because of the high prevalence of meat in their cultural diets. Looking at millennials in particular is crucial because as the first generation born with technology and Internet as constants, they have formed unique characteristics like openness to change and new perspectives. My sample population communicated motivations and constraints to their overall consumption patterns and the frequency and types of meat consumed.

This study found that cost and convenience were the driving factors behind food choice, given the hectic schedules of the sample population, who were mostly students at Arizona State University. Culture played an important role in respondents' heavy meat consumption given their exposure to meat's centrality in traditional Mexican meals. Acculturation did not play an extensive role because prominent Mexican culture in the Southwest U.S. allowed respondents' families access to traditional food while living in the US. The lack of sustainability knowledge and its connection to food choice indicates the importance of marketing that contextualizes decreased meat consumption. Rather than focusing solely on environmental outcomes, marketing tools highlighting health, financial, and economic benefits of eating less meat would encourage more consumers to decrease consumption.
ContributorsNamugayi, Deborah (Author) / Larson, Kelli L (Thesis advisor) / Klinsky, Sonja (Committee member) / Redman, Erin (Committee member) / Arizona State University (Publisher)
Created2014
Description
Carbon capture and sequestration (CCS) is one of the important mitigation options for climate change. Numerous technologies to capture carbon dioxide (CO2) are in development but currently, capture using amines is the predominant technology. When the flue gas reacts with amines (Monoethanaloamine) the CO2 is absorbed into the solution and

Carbon capture and sequestration (CCS) is one of the important mitigation options for climate change. Numerous technologies to capture carbon dioxide (CO2) are in development but currently, capture using amines is the predominant technology. When the flue gas reacts with amines (Monoethanaloamine) the CO2 is absorbed into the solution and forms an intermediate product which then releases CO2 at higher temperature. The high temperature necessary to strip CO2 is provided by steam extracted from the powerplant thus reducing the net output of the powerplant by 25% to 35%. The reduction in electricity output for the same input of coal increases the emissions factor of Nitrogen Oxides, Mercury, Particulate matter, Ammonia, Volatile organic compounds for the same unit of electricity produced. The thesis questions if this tradeoff between CO2 and other emissions is beneficial or not. Three different methodologies, Life Cycle Assessment, Valuation models and cost benefit analysis are used to identify if there is a net benefit to the society on implementation of CCS to a Pulverized coal powerplant. These methodologies include the benefits due to reduction of CO2 and the disbenefits due to the increase of other emissions. The life cycle assessment using ecoindicator'99 methodology shows the CCS is not beneficial under Hierarchical and Egalitarian perspective. The valuation model shows that the inclusion of the other emissions reduces the benefit associated with CCS. For a lower CO2 price the valuation model shows that CCS is detrimental to the environment. The cost benefit analysis shows that a CO2 price of at least $80/tCO2 is required for the cost benefit ratio to be 1. The methodology integrates Montecarlo simulation to characterize the uncertainties associated with the valuation models.
ContributorsSekar, Ashok (Author) / Williams, Eric (Thesis advisor) / Chester, Mikhail (Thesis advisor) / Allenby, Braden (Committee member) / Arizona State University (Publisher)
Created2012
150904-Thumbnail Image.png
Description
Ecolabels are the main driving force of consumer knowledge in the realm of sustainable product purchasing. While ecolabels strive to improve consumer's purchasing decisions, they have overwhelmed the market, leaving consumers confused and distrustful of what each label means. This study attempts to validate and understand environmental concerns commonly found

Ecolabels are the main driving force of consumer knowledge in the realm of sustainable product purchasing. While ecolabels strive to improve consumer's purchasing decisions, they have overwhelmed the market, leaving consumers confused and distrustful of what each label means. This study attempts to validate and understand environmental concerns commonly found in ecolabel criteria and the implications they have within the life cycle of a product. A life cycle assessment (LCA) case study of cosmetic products is used in comparison with current ecolabel program criteria to assess whether or not ecolabels are effectively driving environmental improvements in high impact areas throughout the life cycle of a product. Focus is placed on determining the general issues addressed by ecolabelling criteria and how these issues relate to hotspots derived through a practiced scientific methodology. Through this analysis, it was determined that a majority the top performing supply chain environmental impacts are covered, in some fashion, within ecolabelling criteria, but some, such as agricultural land occupation, are covered to a lesser extent or not at all. Additional criteria are suggested to fill the gaps found in ecolabelling programs and better address the environmental impacts most pertinent to the supply chain. Ecolabels have also been found to have a broader coverage then what can currently be addressed using LCA. The results of this analysis have led to a set of recommendations for furthering the integration between ecolabels and life cycle tools.
ContributorsBernardo, Melissa (Author) / Dooley, Kevin (Thesis advisor) / Chester, Mikhail (Thesis advisor) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2012
154128-Thumbnail Image.png
Description
Recognition of algae as a “Fit for Purpose” biomass and its potential as an energy and bio-product resource remains relatively obscure. This is due to the absence of tailored and unified production information necessary to overcome several barriers for commercial viability and environmental sustainability. The purpose of this research was

Recognition of algae as a “Fit for Purpose” biomass and its potential as an energy and bio-product resource remains relatively obscure. This is due to the absence of tailored and unified production information necessary to overcome several barriers for commercial viability and environmental sustainability. The purpose of this research was to provide experimentally verifiable estimates for direct energy and water demand for the algal cultivation stage which yields algal biomass for biofuels and other bio-products. Algal biomass productivity was evaluated using different cultivation methods in conjunction with assessment for potential reduction in energy and water consumption for production of fuel and feed. Direct water and energy demands are the major focal sustainability metrics in hot and arid climates and are influenced by environmental and operational variables connected with selected algal cultivation technologies. Evaporation is a key component of direct water demand for algal cultivation and directly related to variations in temperature and relative humidity. Temperature control strategies relative to design and operational variables were necessary to mitigate overheating of the outdoor algae culture in panel photobioreactors and sub-optimal cultivation temperature in open pond raceways. Mixing in cultivation systems was a major component in direct energy demand that was provided by aeration in panel bioreactors and paddlewheels in open pond raceways. Management of aeration time to meet required biological interactions provides opportunities for reduced direct energy demand in panel photobioreactors. However, the potential for reduction in direct energy demand in raceway ponds is limited to hydraulics and head loss. Algal cultivation systems were reviewed for potential integration into dairy facilities in order to determine direct energy demand and nutrient requirements for algal biomass production for animal feed. The direct energy assessment was also evaluated for key components of related energy and design parameters for conventional raceway ponds and a gravity fed system. The results of this research provide a platform for selecting appropriate production scenarios with respect to resource use and to ensure a cost effective product with the least environmental burden.
ContributorsBadvipour, Shahrzad (Author) / Sommerfeld, Milton (Thesis advisor) / Downes, Meghan (Committee member) / Abbott, Joshua (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2015