Matching Items (50)
Filtering by

Clear all filters

136573-Thumbnail Image.png
Description
Sustainability has been a growing topic since the 1970’s, but is truly taking shape today as society is beginning to understand the necessity of protecting our environment. Business organizations are following this ‘megatrend’ and are beginning to incorporate sustainable initiatives in their organizations from the inside out. The sports industry

Sustainability has been a growing topic since the 1970’s, but is truly taking shape today as society is beginning to understand the necessity of protecting our environment. Business organizations are following this ‘megatrend’ and are beginning to incorporate sustainable initiatives in their organizations from the inside out. The sports industry is no exception as they are extremely influential over the millions of fans that follow them, whom have a strong affiliation with their favorite team. The Arizona Diamondbacks understand this responsibility and seek to be a leader in their community by creating many sustainable initiatives within their organization and community. The current problem the organization faces, is that much of the community are not aware of their environmental commitment. This is in part due to a lack of marketing within the organization and to the Arizona valley. This project analyzes the sports industry’s commitment to sustainability and how the Arizona Diamondbacks compare to industry leaders. Included is a detailed marketing plan for the organization comprised of current initiatives and of new initiatives that the Diamondbacks could potentially carry out. The implementation of this proposal could deem extremely beneficial as it would strengthen their identity, unify their employees and engage fans, which will make them feel a deeper affiliation with the organization. The Diamondbacks have made a commitment to the environment, but it is time to deepen that commitment, set an example for people in the Valley and in turn, spark social change.
ContributorsBauman, Jillian (Co-author) / Hopson, Emma (Co-author) / Eaton, John (Thesis director) / Kutz, Elana (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management (Contributor) / Department of Marketing (Contributor) / School of Sustainability (Contributor)
Created2015-05
136830-Thumbnail Image.png
DescriptionThe heat island effect has resulted in an observational increase in averave ambient as well as surface temperatures and current photovoltaic implementation do not migitate this effect. Thus, the feasibility and performance of alternative solutions are explored and determined using theoretical, computational data.
ContributorsCoyle, Aidan John (Author) / Trimble, Steven (Thesis director) / Underwood, Shane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136154-Thumbnail Image.png
Description
This paper explores multidisciplinary curricula, services, and experiential learning in higher education on sustainability. Researchers attempt to understand sustainability as a formalized degree program, what frameworks and techniques are used to improve new disciplines, and how Arizona State University's School of Sustainability (SOS) improves sustainability education in higher learning. Secondary

This paper explores multidisciplinary curricula, services, and experiential learning in higher education on sustainability. Researchers attempt to understand sustainability as a formalized degree program, what frameworks and techniques are used to improve new disciplines, and how Arizona State University's School of Sustainability (SOS) improves sustainability education in higher learning. Secondary research includes a discussion on the history of sustainability as a discipline, the university as a social system, the role of university administration, the roles of professors and students, benchmarking and process improvement for curriculum development, and methods to bridge epistemologies in SOS. The paper presents findings from a study of the SOS undergraduate student experience that used focus groups to gather qualitative data and statistical analysis to analyze that data quantitatively. Study findings indicate that that measuring student perception of SOS's academic services, and understanding the social system of the university, helps administration, faculty, and students collaborate more effectively to enhance learning experiences.
ContributorsTom, Sharyn Paige (Author) / Haglund, LaDawn (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Department of Marketing (Contributor) / School of Sustainability (Contributor)
Created2015-05
133387-Thumbnail Image.png
Description
In 2016, in the United States alone, the cosmetics industry made an estimated 62.46 billion dollars in revenue (Revenue of the Cosmetic Industry in the U.S. 2002-2016 | Forecast). With a consistent increase in sales in the last several years, the industry has reached continued success even during times of

In 2016, in the United States alone, the cosmetics industry made an estimated 62.46 billion dollars in revenue (Revenue of the Cosmetic Industry in the U.S. 2002-2016 | Forecast). With a consistent increase in sales in the last several years, the industry has reached continued success even during times of hardship, such as the Great Recession of 2008. The use of Corporate Social Responsibility (CSR), external campaigns, and thoughtful packaging and ingredients resonates with targeted consumers. This has served as an effective strategy to maintain growth in the industry. Cosmetic companies promote their brand image using these sustainability tactics, but there seems to be a lack of transparency in this unregulated industry. The purpose of this thesis is to determine if the cosmetics industry is a good steward of the sustainability movement. Important terms and concepts relating to the industry will be discussed, then an analysis of sustainability focused cosmetic brands will be provided, which highlights the extent to which these brands engage in activities that promote sustainability. This is followed by an application of findings to a company that could benefit from using such practices. Overall, the analysis of the different brands proved to be shocking and disappointing. This is due to the sheer amount that scored very poorly based on the sustainability criteria developed. The cosmetics industry is too inconsistent and too unregulated to truly act as a good steward for sustainability. Though some companies in the industry succeed, these accomplishments are not consistent across all cosmetic companies. Hence, the cosmetics industry as a good steward for sustainability can only be as strong as its weakest link.
ContributorsMamus, Sydney Wasescha (Author) / Ostrom, Amy (Thesis director) / Kristofferson, Kirk (Committee member) / Department of Marketing (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133726-Thumbnail Image.png
Description
Although the Leadership Scholarship Program has seen successful recruiting processes throughout changes in leadership of the program; the organization expressed a need for major overhaul to reevaluate the decisions of the process and to establish backing for those decisions. By asking current and alumni members of the program about what

Although the Leadership Scholarship Program has seen successful recruiting processes throughout changes in leadership of the program; the organization expressed a need for major overhaul to reevaluate the decisions of the process and to establish backing for those decisions. By asking current and alumni members of the program about what they would like to see in a future member of the program as well as which parts of the process they found most important, the qualities of a future member of the program could be established and weighted. The goals of the reevaluation were to help eliminate bias, discrepancies between applications with extremely different uncontrollable factors, define points of discrepancies, and establish organizational sustainability while achieving a 100% acceptance rate from offered students. Each of these goals was achieved through methods outlined in the LSP Selection Process Manual that was written as a result of this reevaluation. The manual also outlines ways to improve the process going forward.
ContributorsCassidy, Delilah R. (Author) / Kappes, Janelle (Thesis director) / Klinkner, Lara (Committee member) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Department of Marketing (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137196-Thumbnail Image.png
Description
As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles

As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles can generate small amounts of electricity, the idea behind this project was to expand energy generation into the more common weight lifting side of exercising. The method for solving this problem was to find the average amount of power generated per user on a Smith machine and determine how much power was available from an accompanying energy generator. The generator consists of three phases: a copper coil and magnet generator, a full wave bridge rectifying circuit and a rheostat. These three phases working together formed a fully functioning controllable generator. The resulting issue with the kinetic energy generator was that the system was too inefficient to serve as a viable system for electricity generation. The electrical production of the generator only saved about 2 cents per year based on current Arizona electricity rates. In the end it was determined that the project was not a sustainable energy generation system and did not warrant further experimentation.
ContributorsO'Halloran, Ryan James (Author) / Middleton, James (Thesis director) / Hinrichs, Richard (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / The Design School (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
134712-Thumbnail Image.png
Description
Over the last century, society has begun to acknowledge and observe how human actions are negatively impacting the environment. Sustainable living is becoming more adopted into daily lives, including a focus on waste management and recycling. Previous informal studies have proposed that coffee grounds can be recycled and added to

Over the last century, society has begun to acknowledge and observe how human actions are negatively impacting the environment. Sustainable living is becoming more adopted into daily lives, including a focus on waste management and recycling. Previous informal studies have proposed that coffee grounds can be recycled and added to the soil to increase plant productivity. The objective of this experiment was to test how different concentrations of roasted coffee grounds would affect the overall plant productivity when introduced in the soil of various plant types and environmental atmospheres. Three treatments were selected (100% potting mix, 50% potting mix/50% coffee grounds, and 25% potting mix/75% coffee grounds) and applied to 3 acid-tolerating plants (radish, basil, and parsley). Each of these treatments were grown in 2 different environments, where one was planted in a Tempe, AZ backyard while the other group was planted in a lab environment, locating at Arizona State University's Tempe Campus. Each plant with its respective treatments (plant type, coffee ground treatment, and environment) had 10 identical plants for statistical accuracy, resulting in a total of 180 plants grown, observed, and analyzed for this 3-month long experiment. The plant development, plant height, length of roots, quantity of leaves, and environmental observations were recorded and used to define plant productivity in this investigation. The experiment demonstrated low survival rates in all groups including the control group, suggesting a flaw in the experimental design. Nonetheless, the experiment showed that among the surviving plants, the 75% treatment had the largest negative impact on plant productivity. The measured root lengths and leaf quantity had various results across each plant group, leaving the hypothesis unverified. Overall, the experiment was effective in demonstrating negative impacts of great concentrations of coffee grounds when introduced to various plants, but further investigation with an adjusted experimental design will need to be completed to reach a reliable conclusion.
ContributorsVan Winkle, Delaney Dare (Author) / Bang, Christofer (Thesis director) / Fox, Peter (Committee member) / Earl, Stevan (Committee member) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134553-Thumbnail Image.png
Description
The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a

The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a strong focal point is needed to concentrate incident solar irradiation on the small, high efficiency cells. The objective of this study was to evaluate and quantify tracking accuracy for a performance model which would apply to similar two-axis systems. An analysis comparing CPV to traditional solar photovoltaics from an economic standpoint was conducted as well to evaluate the viability of emerging CPV technology. The research was performed using two calibrated solar radiation sensors mounted on the plane of the tracking system, normal to the sun. One sensor is held at a constant, normal angle (0 degrees) and the other is varied by a known interior angle in the range of 0 degrees to 10 degrees. This was to study the magnitude of the decrease in in irradiance as the angle deviation increases. The results show that, as the interior angle increases, the solar irradiance and thus available power available on the focal point will decrease roughly at a parabolic rate, with a sharp cutoff point at angles greater than 5 degrees. These findings have a significant impact on CPV system tracking mechanisms, which require high precision tracking in order to perform as intended.
ContributorsPodzemny, Dominic James (Author) / Reddy, Agami (Thesis director) / Kelman, Jonathan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132998-Thumbnail Image.png
Description
The research analyzes the transformation of wasted thermal energy into a usable form through thermogalvanic devices. This technology helps mitigate international growing energy demands. Building energy efficiency is a critical research topic, since the loads account for 40% of all energy demand in developed nations, and 30% in less developed

The research analyzes the transformation of wasted thermal energy into a usable form through thermogalvanic devices. This technology helps mitigate international growing energy demands. Building energy efficiency is a critical research topic, since the loads account for 40% of all energy demand in developed nations, and 30% in less developed nations. A significant portion of the energy consumed for heating and cooling, where a majority is dissipated to the ambient as waste heat. This research answers how much power output (µW·cm-2) can the thermogalvanic brick experimentally produce from an induced temperature gradient? While there are multiple avenues for the initial and optimized prototype design, one key area of interest relating to thermogalvanic devices is the effective surface area of the electrodes. This report highlights the experimental power output measurements of a Cu/Cu2+ thermogalvanic brick by manipulating the effective surface area of the electrodes. Across three meshes, the maximum power output normalized for temperature was found to be between 2.13-2.87 x 10-3 μWcm-2K-2. The highest normalized power output corresponded to the mesh with the highest effective surface area, which was classified as the fine mesh. This intuitively aligned with the theoretical understanding of surface area and maximum power output, where decreasing the activation resistance also reduces the internal resistance, which increases the theoretical maximum power.
ContributorsKiracofe, Ryan Moore (Author) / Phelan, Patrick (Thesis director) / El Asmar, Mounir (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
135629-Thumbnail Image.png
Description
In this paper, I analyze the costs and benefits of waste prevention and zero waste initiatives that are inflicted upon society. The problem lies in the amount of human municipal solid waste (HMSW) resulting from human activities, especially as growing global urban population estimated to be producing three times as

In this paper, I analyze the costs and benefits of waste prevention and zero waste initiatives that are inflicted upon society. The problem lies in the amount of human municipal solid waste (HMSW) resulting from human activities, especially as growing global urban population estimated to be producing three times as much waste as it does today (Goto, 2014). Landfill externalities are addressed to explain the purpose of this research. Additionally, the efficiency of diverting waste from the landfill is assessed; these diversion methods are recycling, composting, and the uses of TerraCycle. It is important to note the difference between waste prevention and zero waste: Waste prevention is simply reducing the amount of waste, whereas zero waste is aiming to divert HMSW for other uses other than going its final destination, the landfill. This research highlights tax policies and incentive-based approaches that cities currently enforce, as well as repercussions of these approaches. Waste prevention is explored from the user perspective and reactions to taxes on waste that were implemented to promote global sustainability, which can be seen from the primary data collected. I analyze the success of zero waste initiatives in the online marketing agency, Vertical Measures, comparing landfill waste diversion with the implementation of zero waste initiatives. This paper highlights the observations and results from this two-month analysis. With both the analyses of city regulations and first-hand application of zero waste and waste prevention methods, the findings suggest that the success of these initiatives depends on various factors including location and participant attitudes. This research and data can help provide insight for other small businesses for a more sustainable environment and workplace.
ContributorsPhong, Kellie Hue (Author) / Williams, Stanley N. (Thesis director) / Abbott, Joshua K. (Committee member) / Slaymaker, Alexandra (Committee member) / W. P. Carey School of Business (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05