Matching Items (40)
Filtering by

Clear all filters

136500-Thumbnail Image.png
Description
Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.
ContributorsSchrilla, John Paul (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136309-Thumbnail Image.png
Description
Although sustainability as a concept and a science has been around for quite some time, it has only recently come into the common vernacular of citizens around the world. While there are a number of arguments that have been and can be made about the role of sustainability in developing

Although sustainability as a concept and a science has been around for quite some time, it has only recently come into the common vernacular of citizens around the world. While there are a number of arguments that have been and can be made about the role of sustainability in developing countries, it can be said with certainty that sustainability education, especially at the pre-university level, is commonly neglected even in countries that have sustainability initiatives elsewhere in their systems. Education is an important part of development in any country, and sustainability education is critical to raising generations who are more aware of the connections in the world around them. Informal education, or education that takes place outside of a formal classroom, can provide an especially important platform for sustainability ideas. These factors take on unique characteristics within the environment of a small island with noble sustainability goals but limited resources and an economy that includes a significant domestic goat population. After providing basic background on sustainability and the nature of the educational process within the environment of the small island-nation of Grenada, I discuss the importance of informal education and follow my path with a local non-profit in Grenada leading to the development of a locally-relevant sustainability curriculum for implementation in a K-6 school.
ContributorsMelkonoff, Natalie Anne (Author) / Eder, James (Thesis director) / BurnSilver, Shauna (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136132-Thumbnail Image.png
Description
Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on

Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on sample exteriors, a 4 mm passivating boundary layer effect was observed, impeding the carbonation process at the center. XRD analysis was used to characterize the extent of carbonation, indicating extremely poor carbonation and therefore CO2 penetration inside the visible boundary. The depth of the passivating layer was found to be independent of both time and choice of aggregate. Less than adequate strength was developed in carbonated trials due to formation of small, weakly-connected crystals, shown with SEM analysis. Additional research, especially in situ analysis with thermogravimetric analysis would be useful to determine the causation of poor carbonation performance. This technology has great potential to substitute for certain Portland cement applications if these issues can be addressed.
ContributorsHermens, Stephen Edward (Author) / Bearat, Hamdallah (Thesis director) / Dai, Lenore (Committee member) / Mobasher, Barzin (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
133586-Thumbnail Image.png
Description
Locusts are a major crop pest in many parts of the world and different species are endemic to different countries. In Latin America, the South American Locust (Schistocerca cancellata) is the predominant species found mostly in Argentina, Chile, Bolivia, Paraguay, and southern Brazil with Argentina being the most affected. Several

Locusts are a major crop pest in many parts of the world and different species are endemic to different countries. In Latin America, the South American Locust (Schistocerca cancellata) is the predominant species found mostly in Argentina, Chile, Bolivia, Paraguay, and southern Brazil with Argentina being the most affected. Several control and management practices, including biological control, have been implemented in these countries in the past to control the locusts and reduce their impact on crop and vegetation, however, effective long-term control and management practices will require a detail understanding of how the predominant locust species in this region responds to resource variation. Research has shown that there is strong evidence that locusts, and many other organisms, will actively balance dietary macronutrients (protein, carbohydrates, and lipids) to optimize growth, survival, and/or reproduction. A study by Cease et. al, 2017, on the dietary preferences of the Mongolian locust (Oedaleus asiaticus) showed that it prefers diets that are high in carbohydrates over diets that are high in protein, in this case locusts self-selected a 1:2 ratio of protein:carbohydrate. This and many other studies provide vital insight into the nutritional and feeding preferences of these locust species but the effects that this difference in protein: carbohydrate preferences has on growth, egg production, flight potential, and survival has yet to be fully explored, hence, this study investigates the effects that nitrogen fertilization of wheatgrass will have on the growth, egg production, survival, and flight muscle mass of the South American locust in a controlled, laboratory environment.
ContributorsManneh, Balanding (Author) / Cease, Arianne (Thesis director) / Overson, Rick (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137493-Thumbnail Image.png
DescriptionThis paper provides an analysis of the differences in impacts made by companies that promote their sustainability efforts. A comparison of companies reveals that the ones with greater supply chain influence and larger consumer bases can make more concrete progress in terms of accomplishment for the sustainability realm.
ContributorsBeaubien, Courtney Lynn (Author) / Anderies, John (Thesis director) / Allenby, Brad (Committee member) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
137162-Thumbnail Image.png
Description
Consumption of seafood poses a substantial threat to global biodiversity. Chemical contamination found in both wild-caught and farmed seafood also presents significant health risks to consumers. Flame retardants, used in upholstery, plastics, clothing, and other products to reduce fire danger, are of particular concern as they are commonly found in

Consumption of seafood poses a substantial threat to global biodiversity. Chemical contamination found in both wild-caught and farmed seafood also presents significant health risks to consumers. Flame retardants, used in upholstery, plastics, clothing, and other products to reduce fire danger, are of particular concern as they are commonly found in the marine environment and permeate the tissues of fish that are sold for consumption via multiple pathways. By summarizing various metrics of sustainability and the mercury content in consumed species of fish and shellfish, researchers have found that high levels of chemical contamination was linked with lesser fishery sustainability. I conducted a literature review of flame retardant content in seafood to further compare contamination and sustainability in addition to the initial analysis with mercury. My review suggests that the widespread issue of fishery collapse could be alleviated by demonstrating to stakeholders that many unsustainable fish stocks are mutually disadvantageous for both human consumers and the environment. Future research should address the need for the collection of data that better represent actual global contaminant concentrations in seafood.
ContributorsNoziglia, Andrea Joyce (Author) / Gerber, Leah (Thesis director) / Smith, Andrew (Committee member) / Pratt, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05
Description
In the face of the world's most pressing sustainability challenges, such as climate change, ecosystem degradation, and loss of biodiversity, the following questions must be explored: Why are these situation occurring? How can we understand their complexity? How can we research these challenges to mitigate negative outcomes? This thesis investigates

In the face of the world's most pressing sustainability challenges, such as climate change, ecosystem degradation, and loss of biodiversity, the following questions must be explored: Why are these situation occurring? How can we understand their complexity? How can we research these challenges to mitigate negative outcomes? This thesis investigates the relationships between people and nature through coupled human and natural systems, or CHANS, and argues for a transdisciplinary research approach for sustainability science. The following questions and topics are discussed: 1. The Complexity of Sustainability and Implications for Traditional Research Approaches 2. Coupled Human and Natural Systems Research 3. What is Transdisciplinary Research, and How Does it Relate to the Living With Locusts Team's Coupled Human and Natural Systems Research? This thesis uses the case of a team researching international locust plagues to argue for this approach. The team's project is titled "Living With Locusts" and is directed by Arianne Cease of Arizona State University's School of Sustainability.
ContributorsLantz, Kayna Mishelle (Author) / Cease, Arianne (Thesis director) / Campbell, Jacob (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134454-Thumbnail Image.png
Description
A growing number of stylists \u2014 cosmetologists \u2014 are finding it harder to afford the basic necessities such as rent. However, the ever-increasing presence of smartphones and the increasing need for on-demand services like Uber and Uber Eats creates a unique opportunity for stylists \u2014 Clippr. Clippr is an application

A growing number of stylists \u2014 cosmetologists \u2014 are finding it harder to afford the basic necessities such as rent. However, the ever-increasing presence of smartphones and the increasing need for on-demand services like Uber and Uber Eats creates a unique opportunity for stylists \u2014 Clippr. Clippr is an application that aims to connect individual stylists directly to their customers. The application gives stylists a platform to create and display their own prices, services, and portfolio. Customers get the benefit of finding a stylist that suits them and booking instantly. This project outlines the backend for the Clippr application. It goes over the framework, REST API, and various functionalities of the application. Additionally, the project also covers the work that is still needed to successfully launch the application.
ContributorsKamath, Sanketh (Author) / Olsen, Christopher (Thesis director) / Sebold, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134704-Thumbnail Image.png
Description
p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult and costly. This research aims to produce p-coumarate directly from renewable and sustainable glucose using a co-culture of Yeast and E. Coli. Methods used in this study include: designing optimal media for mixed-species microbial growth, genetically engineering both strains to build the production pathway with maximum yield, and analyzing the presence of p-Coumarate and its pathway intermediates using High Performance Liquid Chromatography (HPLC). To date, the results of this project include successful integration of C4H activity into the yeast strain BY4741 ∆FDC1, yielding a strain that completely consumed trans-cinnamate (initial concentration of 50 mg/L) and produced ~56 mg/L p-coumarate, a resting cell assay of the co-culture that produced 0.23 mM p-coumarate from an initial L-Phenylalanine concentration of 1.14 mM, and toxicity tests that confirmed the toxicity of trans-cinnamate to yeast for concentrations above ~50 mg/L. The hope for this project is to create a feasible method for producing p-Coumarate sustainably.
ContributorsJohnson, Kaleigh Lynnae (Author) / Nielsen, David (Thesis director) / Thompson, Brian (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12