Matching Items (39)
Filtering by

Clear all filters

157379-Thumbnail Image.png
Description
Institutions of higher learning can be centers of meaning-making and learning and are expected to play a pivotal role in a global shift toward sustainability. Despite recent innovations, much sustainability education today is still delivered using traditional pedagogies common across higher education. Therefore, students and facilitators should continue innovating along

Institutions of higher learning can be centers of meaning-making and learning and are expected to play a pivotal role in a global shift toward sustainability. Despite recent innovations, much sustainability education today is still delivered using traditional pedagogies common across higher education. Therefore, students and facilitators should continue innovating along pedagogical themes consistent with the goals of sustainability: transformation and emancipation. Yet, more clarity is needed about pedagogical approaches that will transform and emancipate students, allowing them to become innovators that change existing structures and systems. My dissertation attempts to address this need using three approaches. First, I present a framework combining four interacting (i.e., complementary) pedagogies (transmissive, transformative, instrumental, and emancipatory) for sustainability education, helping to reify pedagogical concepts, rebel against outdated curricula, and orient facilitators/learners on their journey toward transformative and emancipatory learning. Second, I use a descriptive case study of a sustainability education course set outside of the traditional higher education context to highlight pedagogical techniques that led to transformative and emancipatory outcomes for learners partaking in the course. Third, I employ the method of autoethnography to explore my own phenomenological experience as a sustainability student and classroom facilitator, helping others to identify the disenchanting paradoxes of sustainability education and integrate the lessons they hold. All three approaches of the dissertation maintain a vision of sustainability education that incorporates contemplative practices as essential methods in a field in need of cultivating hope, resilience, and emergence.
ContributorsPapenfuss, Jason (Author) / Merritt, Eileen (Thesis advisor) / Manuel-Navarrete, David (Thesis advisor) / Eckard, Bonnie (Committee member) / Cloutier, Scott (Committee member) / Arizona State University (Publisher)
Created2019
136500-Thumbnail Image.png
Description
Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.
ContributorsSchrilla, John Paul (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136132-Thumbnail Image.png
Description
Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on

Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on sample exteriors, a 4 mm passivating boundary layer effect was observed, impeding the carbonation process at the center. XRD analysis was used to characterize the extent of carbonation, indicating extremely poor carbonation and therefore CO2 penetration inside the visible boundary. The depth of the passivating layer was found to be independent of both time and choice of aggregate. Less than adequate strength was developed in carbonated trials due to formation of small, weakly-connected crystals, shown with SEM analysis. Additional research, especially in situ analysis with thermogravimetric analysis would be useful to determine the causation of poor carbonation performance. This technology has great potential to substitute for certain Portland cement applications if these issues can be addressed.
ContributorsHermens, Stephen Edward (Author) / Bearat, Hamdallah (Thesis director) / Dai, Lenore (Committee member) / Mobasher, Barzin (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
134634-Thumbnail Image.png
Description
Modern American environmental social movements have strived for a better world for nearly fifty years, pushing a philosophy of careful resource use and limited consumption as an alternative to the pollution and degradation that has so far accompanied global industrialization. The reach of these movements is broad and the topic

Modern American environmental social movements have strived for a better world for nearly fifty years, pushing a philosophy of careful resource use and limited consumption as an alternative to the pollution and degradation that has so far accompanied global industrialization. The reach of these movements is broad and the topic they cover is one that aligns with the values and beliefs of many; it is thus quite confusing that they've been so unsuccessful. This thesis was a response to that apparent contradiction, exploring why movements have not been as successful as both they and the public initially desired. It began by defining what social movements are and how they emerge or find success, then provided a brief history of environmentalism in America, and the different successes and failures that occurred before and after the first Earth day in 1970. Finally, it explored some of the reasons environmentalism was unsuccessful, and found that while structural barriers like politics and business interests played a role in movement outcomes, the tactics of different groups were at least partially to blame. Once this was concluded, the author used the perspectives of different activists to propose ways to enhance the quality of current movements and allow them to continue to make progress well into the future. In order to expand the audience of this thesis, the author is also working on a children;s book that illustrates many of the important themes that he hopes to convey to the public. Though drafted, the book is incomplete as of the date that documents are due for Barrett review.
ContributorsGuy, Joel D (Author) / Cloutier, Scott (Thesis director) / Josh, MacFayden (Committee member) / Department of English (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134454-Thumbnail Image.png
Description
A growing number of stylists \u2014 cosmetologists \u2014 are finding it harder to afford the basic necessities such as rent. However, the ever-increasing presence of smartphones and the increasing need for on-demand services like Uber and Uber Eats creates a unique opportunity for stylists \u2014 Clippr. Clippr is an application

A growing number of stylists \u2014 cosmetologists \u2014 are finding it harder to afford the basic necessities such as rent. However, the ever-increasing presence of smartphones and the increasing need for on-demand services like Uber and Uber Eats creates a unique opportunity for stylists \u2014 Clippr. Clippr is an application that aims to connect individual stylists directly to their customers. The application gives stylists a platform to create and display their own prices, services, and portfolio. Customers get the benefit of finding a stylist that suits them and booking instantly. This project outlines the backend for the Clippr application. It goes over the framework, REST API, and various functionalities of the application. Additionally, the project also covers the work that is still needed to successfully launch the application.
ContributorsKamath, Sanketh (Author) / Olsen, Christopher (Thesis director) / Sebold, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134704-Thumbnail Image.png
Description
p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult and costly. This research aims to produce p-coumarate directly from renewable and sustainable glucose using a co-culture of Yeast and E. Coli. Methods used in this study include: designing optimal media for mixed-species microbial growth, genetically engineering both strains to build the production pathway with maximum yield, and analyzing the presence of p-Coumarate and its pathway intermediates using High Performance Liquid Chromatography (HPLC). To date, the results of this project include successful integration of C4H activity into the yeast strain BY4741 ∆FDC1, yielding a strain that completely consumed trans-cinnamate (initial concentration of 50 mg/L) and produced ~56 mg/L p-coumarate, a resting cell assay of the co-culture that produced 0.23 mM p-coumarate from an initial L-Phenylalanine concentration of 1.14 mM, and toxicity tests that confirmed the toxicity of trans-cinnamate to yeast for concentrations above ~50 mg/L. The hope for this project is to create a feasible method for producing p-Coumarate sustainably.
ContributorsJohnson, Kaleigh Lynnae (Author) / Nielsen, David (Thesis director) / Thompson, Brian (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133552-Thumbnail Image.png
Description
Public participation is lauded as a keystone of sustainability policy and community development. Sustainability issues span all sectors of society and are best addressed at the local level, which makes community involvement and participation necessary for building local sustainability strategies. But do public participation events actually foster meaningful connections among

Public participation is lauded as a keystone of sustainability policy and community development. Sustainability issues span all sectors of society and are best addressed at the local level, which makes community involvement and participation necessary for building local sustainability strategies. But do public participation events actually foster meaningful connections among those who attend? How can we as sustainability experts empower communities to share their knowledge about the place where they live? This project starts by considering at gaps in public participation processes that prevent members of a community from building a sense of trust. Major gaps identified in the public participation process include a lack of attention to underlying power dynamics, unaddressed social tensions, and a lack of focus on the co-creation of knowledge. These gaps lead to a lack of trust between facilitators and participants, and prevents participants from feeling invested in the process and forming meaningful connections with their fellow participants. Based on the gaps identified in public participation processes, the second part of this project focused on hosting a workshop that would bring people together in an effort to rebuild trust. The workshop centered around the meaning of community and sense of place, as these topics are relevant to the health and relationships of communities. The event was hosted on Arizona State University's Tempe campus, and the participants were all connected to the university in some way (student, faculty, or alumni). A pre-workshop survey was sent out to participants to gauge favorite places on campus and what made those places meaningful. The workshop itself was broken into two parts: Part One focused on the building a trusting space for the workshop and unpacking the definition of community in a group discussion. Part Two included two mapping exercises that engaged participants in how the land around ASU's Tempe campus had changed over time, followed by a discussion about how the history of land affects communities. A post-workshop survey was sent out two weeks after the event to see how participants had incorporated lessons from the workshop, if at all. The workshop process brought up several interesting areas for further research. One outcome of the discussion in Part One of the workshop was that the participants tended to think of community in terms of relationships rather than place. People also interacted differently based on how confident they were in their knowledge of the topic at hand, whether expert or informal. Public participation workshops like this have implications for how governments, businesses and schools approach stakeholder engagement. With the right balance of power and co-creation of knowledge, public participation events can become places for members of a community to rebuild trust in each other and the institutions that govern them.
ContributorsBaker, Hailey Louise (Author) / Cloutier, Scott (Thesis director) / Morrison, Beth Ann (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132932-Thumbnail Image.png
Description
College and university campuses can play an important role in a student’s life, and campus outdoor spaces have the ability to positively impact various aspects of student health and well-being. It has long been understood that natural environments can promote health and well being, and in recent years research has

College and university campuses can play an important role in a student’s life, and campus outdoor spaces have the ability to positively impact various aspects of student health and well-being. It has long been understood that natural environments can promote health and well being, and in recent years research has begun to examine the impact of parks and landscapes in urban settings on subjective well-being (SWB). Subjective well-being (aka “happiness”) refers to
one’s self-reported measure of well-being and is thought of as having a high level of positive affect, low level of negative affect, and high degree of life satisfaction (Diener, 1984).

This study was conducted to assess the interrelationships between affective experiences, SWB, and usage of campus outdoor spaces in order to learn how outdoor spaces on the Arizona State University (ASU) Tempe campus can be enhanced to increase SWB and usage. In total, 832 students completed a survey questionnaire 1,140 times for six campus outdoor spaces. The results showed that students experience the greatest amount of happiness in the Secret Garden
and James Turrell ASU Skyspace, relaxation/restoration is the affective experience most strongly related to SWB, and SWB is negatively correlated with frequency of visits but positively link with duration of visits. To improve student happiness and usage of outdoor spaces on campuses, planners and designers should work on increasing the relaxing/restorative qualities of existing
locations, creating new spaces for relaxation/restoration around campus, reducing the perception of crowding and noise in large spaces, increasing fun/excitement by adding stimuli and/or opportunities for activity and entertainment, and adding equipment necessary for students to perform the activities they want. In addition to the ASU Tempe campus, the methodology and
findings of this research could be used to improve outdoor spaces on other college and university campuses and other types of outdoor environments.
ContributorsDavis, Kara (Author) / Cheng, Chingwen (Thesis director) / Cloutier, Scott (Committee member) / School of Sustainability (Contributor) / Dean, W.P. Carey School of Business (Contributor) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133324-Thumbnail Image.png
Description
In the pursuit of sustainable sources of energy that do less harm to the environment, numerous technologies have been developed to reduce carbon emissions in the atmosphere. The implementation of carbon capture and storage systems (CCS) has played a crucial role in reducing CO2 emissions, but depleting storage reserves and

In the pursuit of sustainable sources of energy that do less harm to the environment, numerous technologies have been developed to reduce carbon emissions in the atmosphere. The implementation of carbon capture and storage systems (CCS) has played a crucial role in reducing CO2 emissions, but depleting storage reserves and ever-increasing costs of sequestrating captured CO2 has prompted the idea of utilizing CO2 as soon as it is produced (i.e. carbon capture and utilization, or CCU) and storing any remaining amounts. This project analyzes the cost of implementing a delafossite CuFeO2 backed CCU system for the average US coal-burning power plant with respect to current amounts of CO2 captured. Beyond comparing annual maintenance costs of CCU and CCS systems, the project extends previous work done on direct CO2 conversion to liquid hydrocarbons by providing a protocol for determining how the presence of NO affects the products formed during pure CO2 hydrogenation. Overall, the goal is to gauge the applicability of CCU systems to power plants with a sub 10-year lifespan left, whilst observing the potential revenue that can be potentially generated from CCU implementation. Under current energy costs ($0.12 per kWh), a delafossite CuFeO2 supported CCU system would generate over $729 thousand in profit for an average sized supercritical pulverized coal power (SCPC) plants selling diesel fuel created from CO2 hydrogenation. This amount far exceeds the cost of storing captured CO2 and suggests that CCU systems can be profitable for SCPC power plants that intend to burn coal until 2025.
ContributorsShongwe, Thembelihle Wakhile (Author) / Andino, Jean (Thesis director) / Otsengue, Thonya (Committee member) / Economics Program in CLAS (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05