Matching Items (49)
Filtering by

Clear all filters

131509-Thumbnail Image.png
Description
This thesis project was conducted to create a practical tool to help micro and small local food enterprises identify potential strategies and sources of finance. Currently, many of these enterprises are unable to obtain the financial capital needed to start-up or maintain operations.

Sources and strategies of finance studied and

This thesis project was conducted to create a practical tool to help micro and small local food enterprises identify potential strategies and sources of finance. Currently, many of these enterprises are unable to obtain the financial capital needed to start-up or maintain operations.

Sources and strategies of finance studied and ultimately included in the tool were Loans, Equity, Membership, Crowdfunding, and Grants. The tool designed was a matrix that takes into account various criteria of the business (e.g. business lifecycle, organizational structure, business performance) and generates a financial plan based on these criteria and how they align with the selected business strategies. After strategies are found, stakeholders can search through an institutional database created in conjunction with the matrix tool to find possible institutional providers of financing that relate to the strategy or strategies found.

The tool has shown promise in identifying sources of finance for micro and small local food enterprises in practical use with hypothetical business cases, however further practical use is necessary to provide further input and revise the tool as needed. Ultimately, the tool will likely become fully user-friendly and stakeholders will not need the assistance of another expert helping them to use it. Finally, despite the promise of the tool itself, the fundamental and underlying problem that many of these businesses face (lack of infrastructure and knowledge) still exists, and while this tool can also help capacity-building efforts towards both those seeking and those providing finance, an institutional attitude adjustment towards social and alternative enterprises is necessary in order to further simplify the process of obtaining finance.
ContributorsDwyer, Robert Francis (Author) / Wiek, Arnim (Thesis director) / Forrest, Nigel (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
136500-Thumbnail Image.png
Description
Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.
ContributorsSchrilla, John Paul (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136406-Thumbnail Image.png
Description
In this paper, I analyze representations of nature in popular film, using the feminist / deconstructionist concept of a dualism to structure my critique. Using Val Plumwood’s analysis of the logical structure of dualism and the 5 ‘features of a dualism’ that she identifies, I critique 5 popular movies –

In this paper, I analyze representations of nature in popular film, using the feminist / deconstructionist concept of a dualism to structure my critique. Using Val Plumwood’s analysis of the logical structure of dualism and the 5 ‘features of a dualism’ that she identifies, I critique 5 popular movies – Star Wars, Lord of the Rings, Brave, Grizzly Man, and Planet Earth – by locating within each of them one of the 5 features and explaining how the movie functions to reinforce the Nature/Culture dualism . By showing how the Nature/Culture dualism shapes and is shaped by popular cinema, I show how “Nature” is a social construct, created as part of this very dualism, and reified through popular culture. I conclude with the introduction of a number of ‘subversive’ pieces of visual art that undermine and actively deconstruct the Nature/Culture dualism and show to the viewer a more honest presentation of the non-human world.
ContributorsBarton, Christopher Joseph (Author) / Broglio, Ron (Thesis director) / Minteer, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2015-05
136132-Thumbnail Image.png
Description
Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on

Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on sample exteriors, a 4 mm passivating boundary layer effect was observed, impeding the carbonation process at the center. XRD analysis was used to characterize the extent of carbonation, indicating extremely poor carbonation and therefore CO2 penetration inside the visible boundary. The depth of the passivating layer was found to be independent of both time and choice of aggregate. Less than adequate strength was developed in carbonated trials due to formation of small, weakly-connected crystals, shown with SEM analysis. Additional research, especially in situ analysis with thermogravimetric analysis would be useful to determine the causation of poor carbonation performance. This technology has great potential to substitute for certain Portland cement applications if these issues can be addressed.
ContributorsHermens, Stephen Edward (Author) / Bearat, Hamdallah (Thesis director) / Dai, Lenore (Committee member) / Mobasher, Barzin (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
133177-Thumbnail Image.png
Description
From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how

From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how these policies interact with hydroclimatic variability. As explanatory variables in multiple linear regression (MLR) models, water use policies were found to be significant at both the zip code and city levels. Policies that specifically target behavioral changes were significant mathematical drivers of water use in city-level models. Policy data was aggregated into a timeline and coded based on categories including user type, whether the policy was voluntary or mandatory, the targeted water use type, and whether the change in question concerns active or passive conservation. The analyzed policies include but are not limited to state drought declarations, regulatory municipal ordinances, and incentive programs for household appliances. Spatial averages of available hydroclimatic data have been computed and validated using inverse distance weighting methods. The data was aggregated at the zip code level to be comparable to the available water use data for use in MLR models. Factors already known to affect water use, such as temperature, precipitation, income, and water stress, were brought into the MLR models as explanatory variables. After controlling for these factors, the timeline policies were brought into the model as coded variables to test their effect on water demand during the years 2000-2017. Clearly identifying which policy traits are effective will inform future policymaking in cities aiming to conserve water. The findings suggest that drought-related policies impact per capita urban water use. The results of the city level MLR models indicate that implementation of mandatory policies that target water use behaviors effectively reduce water use. Temperature, income, unemployment, and the WaSSI were also observed to be mathematical drivers of water use. Interaction effects between policies and the WaSSI were statistically significant at both model scales.
ContributorsHjelmstad, Annika Margaret (Author) / Garcia, Margaret (Thesis director) / Larson, Kelli (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133187-Thumbnail Image.png
Description
The purpose of this project is to create an affordable and low-environmental impact housing model for high-density urban living. Detailed research was completed to select the Arizonan city of Tempe for the basis of this model such as author's preference and alarming demographic and economic factors. The finalized model will

The purpose of this project is to create an affordable and low-environmental impact housing model for high-density urban living. Detailed research was completed to select the Arizonan city of Tempe for the basis of this model such as author's preference and alarming demographic and economic factors. The finalized model will consist of shipping containers that will be converted into housing. These domiciles are ideal for a maximum of 1-2 occupants. The units will be stacked into communities to accomplish high density. These shipping containers will be used rather than brand new, the community landscape will consist of natural desert landscaping, a recycling program will be offered, and solar panels will be used to power the units. The decision for these features fulfills both the mission of the project and markets to the main demographic group of residents in Tempe, Millennials, who usually place sustainability in high regard. These units are meant to be purchased by the target market and other citizens to increase homeownership rates in Tempe. Their ownership rights will be analogous owning a condo, where they will own the converted shipping container itself, but not the property the unit is placed on. In addition, these units qualify for traditional loans and will appreciate similar to normal housing options. After conceptualizing the idea, various costs were analyzed for construction of the units. A critical component of the project is to receive government grants to fund the venture in order to continue the mission and keep prices of these units low. This model is expandable and could be moved to other cities within the state or potentially other states through future government grant attainment and success with the first installation. These communities will be managed by a company, Shipping Designs, which will be a limited liability company created by the author, Shauna Burgoyne.
ContributorsBurgoyne, Shauna Cheyenne (Author) / Kellso, James (Thesis director) / Dooley, Kevin (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
The idea of a packed promenade, crowded with busy shoppers and completely empty of cars may seem like a holdover from rustic 19th century Europe — but many present day examples can be found right here in the United States — in college towns like Madison, WI, big cities like

The idea of a packed promenade, crowded with busy shoppers and completely empty of cars may seem like a holdover from rustic 19th century Europe — but many present day examples can be found right here in the United States — in college towns like Madison, WI, big cities like Denver CO, and lots of places in between. In recent years, proposals to change Mill Ave. here in Tempe have been introduced to modify University Dr. to Rio Salado Pkwy. into just that type of pedestrianized shopping mall, closing it to all automobile traffic outside of emergency vehicles.
As two students who frequent the potentially affected area, we explore the feasibility of such a proposal to continue to grow the downtown Tempe economy. Our research focuses upon several different areas — exploring positive and negative cases of street pedestrianization (whether in Europe, the United States, or other countries), the impact a permanent street closure in Tempe would have both on personal traffic and on the city’s robust public transit system, potential security concerns, opinions of the business community on the proposed change, and the political feasibility of passing the proposal through the Tempe City Council.
ContributorsBaker, Alex Anton (Co-author) / O'Malley, Jessica (Co-author) / King, David (Thesis director) / Kuby, Lauren (Committee member) / Department of Information Systems (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137196-Thumbnail Image.png
Description
As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles

As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles can generate small amounts of electricity, the idea behind this project was to expand energy generation into the more common weight lifting side of exercising. The method for solving this problem was to find the average amount of power generated per user on a Smith machine and determine how much power was available from an accompanying energy generator. The generator consists of three phases: a copper coil and magnet generator, a full wave bridge rectifying circuit and a rheostat. These three phases working together formed a fully functioning controllable generator. The resulting issue with the kinetic energy generator was that the system was too inefficient to serve as a viable system for electricity generation. The electrical production of the generator only saved about 2 cents per year based on current Arizona electricity rates. In the end it was determined that the project was not a sustainable energy generation system and did not warrant further experimentation.
ContributorsO'Halloran, Ryan James (Author) / Middleton, James (Thesis director) / Hinrichs, Richard (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / The Design School (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05