Matching Items (8)
Filtering by

Clear all filters

150749-Thumbnail Image.png
Description
Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients,

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.
ContributorsNoonan, Kathryn Alexander (Author) / Hartnett, Hilairy (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Shock, Everett (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
157423-Thumbnail Image.png
Description
Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth.

Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth. This study drew upon localized rain gauge data and four data-sets of cover-line and biomass data to estimate ANPP and to determine annual precipitation (PPT). I measured soil depth to caliche and texture by layer of 112 plots across the four landscape units for which estimation of ANPP were available. A pedotransfer function was used to estimate AWHC from soil depth increments to depth of caliche measurements and texture analysis. These data were analyzed using simple and multivariate regression to test the effect of annual precipitation and available water holding capacity on aboveground net primary production. Soil texture remained constant among all plots (sandy loam) and depth to caliche varied from 15.16 cm to 189 cm. AWHC and the interaction term (PPT*AWHC) were insignificant (p=0.142, p=0.838) and annual PPT accounted for 18.4% of the variation in ANPP. The y-intercept was significantly different for ANPP ~ annual PPT when considering AWHC values either above or below 3 cm. Shrub ANPP was insensitive to precipitation regardless of AWHC (R2=-0.012, R2=0.014). Results from this study indicate that a model incorporating annual PPT and AWHC may not serve as a good predictor for ANPP at a site level where there is little variation in soil texture.
ContributorsWagner, Svenja K (Author) / Sala, Osvaldo E. (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Peters, Debra (Committee member) / Arizona State University (Publisher)
Created2019
136800-Thumbnail Image.png
Description
In this project, I investigated the ecosystem services, or lack thereof, that landscape designs created in terms of microclimate modification at 11 residential homes throughout the Phoenix Metro Area. I also created an article for the homeowners who participated, explaining what I did and how they could apply my research.

In this project, I investigated the ecosystem services, or lack thereof, that landscape designs created in terms of microclimate modification at 11 residential homes throughout the Phoenix Metro Area. I also created an article for the homeowners who participated, explaining what I did and how they could apply my research. My research question was how a person can achieve a comfortable outdoor climate in their yard without over-using scarce water resources. I hypothesized that there would be a negative correlation between the maximum air temperature and the percent shade in each yard, regardless of the percent grass. I analyzed the data I collected using the program, R, and discovered that my hypothesis was supported for the month of July. These results are in line with previous studies on the subject and can help homeowners make informed decisions about the effects their landscaping choices might have.
ContributorsBarton, Erin Michaela (Author) / Hall, Sharon (Thesis director) / Ruddell, Benjamin (Committee member) / Spielmann, Katherine (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2014-05
134888-Thumbnail Image.png
Description
The Prosopis genus of trees, also known as mesquites, are uniquely equipped to allow for an agroforestry regime in which crops can be grown beneath the canopy of the tree. Mesquites have the ability to redistribute water moisture in such a way that allows plants under the canopy to use

The Prosopis genus of trees, also known as mesquites, are uniquely equipped to allow for an agroforestry regime in which crops can be grown beneath the canopy of the tree. Mesquites have the ability to redistribute water moisture in such a way that allows plants under the canopy to use water that has been brought up by the roots of mesquite trees. This means that there is a potential for food crops to be grown under the trees without using additional irrigation measures. This could be used where access to water is limited or for a sustainability-minded farmer who is trying to reduce water inputs in an arid environment. Mesquite trees produce a variety of products, including lumber and bean pods that can be ground down into an edible flour. Both products demand a high price in the marketplace and are produced in addition to the crops that can potentially be grown beneath the mesquite tree. In order to determine whether or not it is possible to grow crops under mesquite trees, I reviewed a wide range of literature regarding hydraulic redistribution, mesquite trees in general, and what plants might be best suited for growing beneath a mesquite. The list of plants was narrowed down to four crops that seemed most likely to survive in shaded, low water conditions in a hot environment. There has not been any research done on crops growing beneath mesquite trees, so the next step for research would be to experiment with each of the crops to determine how well each species can adapt to the specified conditions.
ContributorsMesser, Luke Winston (Author) / Eakin, Hallie (Thesis director) / Hall, Sharon (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
152115-Thumbnail Image.png
Description
Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.
ContributorsMyers, Natalie Kristine (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Hall, Sharon (Committee member) / Turner, Benjamin (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
132353-Thumbnail Image.png
Description
Dissolved organic matter (DOM) can have numerous effects on the water chemistry and the biological life within an aquatic system with its wide variety of chemical structures and properties. The composition of the dissolved carbon can be estimated by utilizing the fluorescent properties of some DOM such as aromatic amino

Dissolved organic matter (DOM) can have numerous effects on the water chemistry and the biological life within an aquatic system with its wide variety of chemical structures and properties. The composition of the dissolved carbon can be estimated by utilizing the fluorescent properties of some DOM such as aromatic amino acids and humic material. This experiment was used to observe how organic matter could influence hydrothermal systems, such as Sylvan Springs in Yellowstone National Park, USA. Using optical density at 600 nm (OD 600), excitation-emission matrix spectra (EEMS), and Illumina sequencing methods (16S rRNA gene sequencing), changes in dissolved organic matter (DOM) were observed based on long term incubation at 84ºC and microbial influence. Four media conditions were tested over a two-month duration to assess these changes: inoculated pine needle media, uninoculated pine needle media, inoculated yeast extract media, and uninoculated yeast extract media. The inoculated samples contained microbes from a fluid and sediment sample of Sylvan Spring collected July 23, 2018. Absorbance indicated that media containing pine needle broth poorly support life, whereas media containing yeast extract revealed a positive increase in growth. Excitation-Emission Matrix Spectra of the all media conditions indicated changes in DOM composition throughout the trial. There were limited differences between the inoculated and uninoculated samples suggesting that the DOM composition change in this study was dominated by the two-month incubation at 84ºC more than biotic processes. Sequencing performed on a sediment sample collected from Sylvan Spring indicated five main order of prokaryotic phyla: Aquificales, Desulfurococcales, Thermoproteales, Thermodesulfobacteriales, and Crenarchaeota. These organisms are not regarded as heterotrophic microbes, so the lack of significant biotic changes in DOM could be a result of these microorganisms not being able to utilize these enrichments as their main metabolic energy supply.
ContributorsKnott, Nicholas Joseph (Author) / Shock, Everett (Thesis director) / Hartnett, Hilairy (Committee member) / Till, Christy (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165679-Thumbnail Image.png
Description
The Greater Obsidian Pool Area just south of the Mud Volcano area in Yellowstone National Park is an active and ever-changing hot spring region. Situated next to a lake in a meadow between several hills of glacial deposits, north of the Elephant Back rhyolite flow, a diverse group of hot

The Greater Obsidian Pool Area just south of the Mud Volcano area in Yellowstone National Park is an active and ever-changing hot spring region. Situated next to a lake in a meadow between several hills of glacial deposits, north of the Elephant Back rhyolite flow, a diverse group of hot springs has been developing. This study examines the geologic and geomorphic context of the hot springs, finding evidence for a previously undiscovered hydrothermal explosion crater and examining the deposits around the region that contribute to properties of the groundwater table. Hot spring geochemical measurements (Cl- and SO4-2) taken over the course of 20 years are used to determine fluid sourcing of the springs. The distribution of Cl-, an indicator of water-rock interaction, in the hot springs leads to the theory of a fissure delivering hydrothermal fluid in a line across the hot spring zone, with meteoric water from incoming groundwater diluting hot springs moving further from the fissure. A possible second dry fissure delivering mostly gas is also a possible explanation for some elevated sulfate concentrations in certain springs. The combination of geology, geomorphology, and geochemistry reveals how the surface and subsurface operate to generate different hot spring compositions.
ContributorsAlexander, Erin (Author) / Shock, Everett (Thesis director) / Whipple, Kelin (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
190909-Thumbnail Image.png
Description
Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a

Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a half of field work in 10 regions within Yellowstone National Park and subsequent geochemical lab analyses reveal that sulfate-dominant acidic regions have high DOC (Up to 57 ppm C) and lower DIC (up to 50 ppm C) compared to neutral-chloride regions with low DOC (< 2 ppm C) and higher DIC (up to 100 ppm C). Abundances and isotopic data suggest that sedimentary rock erosion by acidic hydrothermal fluids, fresh snow-derived meteoric water, and exogenous carbon input allowed by local topography may affect DOC levels. Evaluating the isotopic compositions of DIC and DOC in hydrothermal fluids gives insight on the geology and microbial life in the subsurface between different regions. DIC δ13C values range from -4‰ to +5‰ at pH 5-9 and from -10‰ to +3‰ at pH 2-5 with several springs lower than -10‰. DOC δ13C values parkwide range from -10‰ to -30‰. Within this range, neutral-chloride regions in the Lower Geyser Basin have lighter isotopes than sulfate-dominant acidic regions. In hot springs with elevated levels of DOC, the range only varies between -20‰ and -26‰ which may be caused by local exogenous organic matter runoff. Combining other geochemical measurements, such as differences in chloride and sulfate concentrations, demonstrates that some regions contain mixtures of multiple fluids moving through the complex hydrological system in the subsurface. The mixing of these fluids may account for increased levels of DOC in meteoric sulfate-dominant acidic regions. Ultimately, the foundational values of dissolved carbon and their isotopic composition is provided in a parkwide study, so results can be combined with future studies that apply different sequencing analyses to understand specific biogeochemical cycling and microbial communities that occur in individual hot springs.
ContributorsBarnes, Tanner (Author) / Shock, Everett (Thesis advisor) / Meyer-Dombard, D'Arcy (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2023