Matching Items (28)
Filtering by

Clear all filters

155448-Thumbnail Image.png
Description
In this dissertation research, conventional and aberration-corrected (AC) transmission electron microscopy (TEM) techniques were used to evaluate the structural and compositional properties of thin-film semiconductor compounds/alloys grown by molecular beam epitaxy for infrared photo-detection. Imaging, diffraction and spectroscopy techniques were applied to TEM specimens in cross-section geometry to extract information

In this dissertation research, conventional and aberration-corrected (AC) transmission electron microscopy (TEM) techniques were used to evaluate the structural and compositional properties of thin-film semiconductor compounds/alloys grown by molecular beam epitaxy for infrared photo-detection. Imaging, diffraction and spectroscopy techniques were applied to TEM specimens in cross-section geometry to extract information about extended structural defects, chemical homogeneity and interface abruptness. The materials investigated included InAs1-xBix alloys grown on GaSb (001) substrates, InAs/InAs1-xSbx type-II superlattices grown on GaSb (001) substrates, and CdTe-based thin-film structures grown on InSb (001) substrates.

The InAsBi dilute-bismide epitaxial films were grown on GaSb (001) substrates at relatively low growth temperatures. The films were mostly free of extended defects, as observed in diffraction-contrast images, but the incorporation of bismuth was not homogeneous, as manifested by the lateral Bi-composition modulation and Bi-rich surface droplets. Successful Bi incorporation into the InAs matrix was confirmed using lattice expansion measurements obtained from misfit strain analysis of high-resolution TEM (HREM) images.

Analysis of averaged intensity line profiles in HREM and scanning TEM (STEM) images of the Ga-free InAs/InAs1-xSbx type-II strained superlattices indicated slight variations in layer thickness across the superlattice stack. The interface abruptness was evaluated using misfit strain analysis of AC-STEM images, electron energy-loss spectroscopy and 002 dark-field imaging. The compositional profiles of antimony across the superlattices were fitted to a segregation model and revealed a strong antimony segregation probability.

The CdTe/MgxCd1-xTe double-heterostructures were grown with Cd overflux in a dual-chamber molecular beam epitaxy with an ultra-high vacuum transfer loadlock. Diffraction-contrast images showed that the growth temperature had a strong impact on the structural quality of the epilayers. Very abrupt CdTe/InSb interfaces were obtained for epilayers grown at the optimum temperature of 265 °C, and high-resolution imaging using AC-STEM revealed an interfacial transition region with a width of a few monolayers and smaller lattice spacing than either CdTe or InSb.
ContributorsLu, Jing (Author) / Smith, David J. (Thesis advisor) / Alford, Terry L. (Committee member) / Crozier, Peter A. (Committee member) / McCartney, Martha R. (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2017
149459-Thumbnail Image.png
Description
Miedema's plot is used to select the Cu/metal barrier for Cu metallization.The Cu/metal barrier system selected should have positive heat of formation (Hf) so that there is no intermixing between the two layers. In this case, Ru is chosen as a potential candidate, and then the barrier properties of sputtered

Miedema's plot is used to select the Cu/metal barrier for Cu metallization.The Cu/metal barrier system selected should have positive heat of formation (Hf) so that there is no intermixing between the two layers. In this case, Ru is chosen as a potential candidate, and then the barrier properties of sputtered Cu/Ru thin films on thermally grown SiO2 substrates are investigated by Rutherford backscattering spectrometry (RBS), X-ray diffractometry (XRD), and electrical resistivity measurement. The Cu/Ru/SiO2 samples are analyzed prior to and after vacuum annealing at various temperatures of 400, 500, and 600 oC and at different interval of times of 0.5, 1 and 2 hrs for each temperature. Backscattering analysis indicate that both the copper and ruthenium thin films are thermally stable at high temperature of 600 oC, without any interdiffusion and chemical reaction between Cu and Ru thin films. No new phase formation is observed in any of the Cu/Ru/SiO2 samples. The XRD data indicate no new phase formation in any of the annealed Cu/Ru/SiO2 samples and confirmed excellent thermal stability of Cu on Ru layer. The electrical resistivity measurement indicated that the electrical resistivity value of the copper thin films annealed at 400, 500, and 600 oC is essentially constant and the copper films are thermally stable on Ru, no reaction occurs between copper films and Ru the layer. Cu/Ru/SiO2 multilayered thin film samples have been shown to possess good mechanical strength and adhesion between the Cu and Ru layers compared to the Cu/SiO2 thin film samples. The strength evaluation is carried out under static loading conditions such as nanoindentation testing. In this study, evaluation and comparison is donebased on the dynamic deformation behavior of Cu/Ru/SiO2 and Cu/SiO2 samples under scratch loading condition as a measure of tribological properties. Finally, the deformation behavior under static and dynamic loading conditions is understood using the scanning electron microscope (SEM) and the focused ionbeam imaging microscope (FIB) for topographical and cross-sectional imaging respectively.
ContributorsVenkatesh, Srilakshmi Hosadurga (Author) / Alford, Terry L. (Thesis advisor) / Krause, Stephen (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2010
149554-Thumbnail Image.png
Description
The object of this study is to investigate and improve the performance/stability of the flexible thin film transistors (TFTs) and to study the properties of metal oxide transparent conductive oxides for wide range of flexible electronic applications. Initially, a study has been done to improve the conductivity of ITO (indium

The object of this study is to investigate and improve the performance/stability of the flexible thin film transistors (TFTs) and to study the properties of metal oxide transparent conductive oxides for wide range of flexible electronic applications. Initially, a study has been done to improve the conductivity of ITO (indium tin oxide) films on PEN (polyethylene naphthalate) by inserting a thin layer of silver layer between two ITO layers. The multilayer with an optimum Ag mid-layer thickness, of 8 nm, exhibited excellent photopic average transmittance (~ 88 %), resistivity (~ 2.7 × 10-5 µ-cm.) and has the best Hackee figure of merit (41.0 × 10-3 Ω-1). The electrical conduction is dominated by two different scattering mechanisms depending on the thickness of the Ag mid-layer. Optical transmission is explained by scattering losses and absorption of light due to inter-band electronic transitions. A systematic study was carried out to improve the performance/stability of the TFTs on PEN. The performance and stability of a-Si:H and a-IZO (amorphous indium zinc oxide) TFTs were improved by performing a systematic low temperature (150 °C) anneals for extended times. For 96 hours annealed a-Si:H TFTs, the sub-threshold slope and off-current were reduced by a factor ~ 3 and by 2 orders of magnitude, respectively when compared to unannealed a-Si:H TFTs. For a-IZO TFTs, 48 hours of annealing is found to be the optimum time for the best performance and elevated temperature stability. These devices exhibit saturation mobility varying between 4.5-5.5 cm2/V-s, ION/IOFF ratio was 106 and a sub-threshold swing variation of 1-1.25 V/decade. An in-depth study on the mechanical and electromechanical stress response on the electrical properties of the a-IZO TFTs has also been investigated. Finally, the a-Si:H TFTs were exposed to gamma radiation to examine their radiation resistance. The interface trap density (Nit) values range from 5 to 6 × 1011 cm-2 for only electrical stress bias case. For "irradiation only" case, the Nit value increases from 5×1011 cm-2 to 2×1012 cm-2 after 3 hours of gamma radiation exposure, whereas it increases from 5×1011 cm-2 to 4×1012 cm-2 for "combined gamma and electrical stress".
ContributorsIndluru, Anil (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter (Committee member) / Krause, Stephen (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2011
149342-Thumbnail Image.png
Description
The object of this body of work is to study the properties and suitability of zinc oxide thin films with a view to engineering them for optoelectronics applications, making them a cheap and effective alternative to indium tin oxide (ITO), the most used transparent conducting oxides in the industry. Initially,

The object of this body of work is to study the properties and suitability of zinc oxide thin films with a view to engineering them for optoelectronics applications, making them a cheap and effective alternative to indium tin oxide (ITO), the most used transparent conducting oxides in the industry. Initially, a study was undertaken to examine the behavior of silver contacts to ZnO and ITO during thermal processing, a step frequently used in materials processing in optoelectronics. The second study involved an attempt to improve the conductivity of ZnO films by inserting a thin copper layer between two ZnO layers. The Hall resistivity of the films was as low as 6.9×10-5 -cm with a carrier concentration of 1.2×1022 cm-3 at the optimum copper layer thickness. The physics of conduction in the films has been examined. In order to improve the average visible transmittance, we replaced the copper layer with gold. The films were then found to undergo a seven orders of magnitude drop in effective resistivity from 200 -cm to 5.2×10-5 -cm The films have an average transmittance between 75% and 85% depending upon the gold thickness, and a peak transmittance of up to 93%. The best Haacke figure of merit was 15.1×10-3 . Finally, to test the multilayer transparent electrodes on a device, ZnO/Au/ZnO (ZAZ) electrodes were evaluated as transparent electrodes for organic light-emitting devices (OLEDs). The electrodes exhibited substantially enhanced conductivity (about 8×10-5 -cm) over conventional indium tin oxide (ITO) electrodes (about 3.2×10-5 -cm). OLEDs fabricated with the ZAZ electrodes showed reduced leakage compared to control OLEDs on ITO and reduced ohmic losses at high current densities. At a luminance of 25000 cd/m2, the lum/W efficiency of the ZAZ electrode based device improved by 5% compared to the device on ITO. A normalized intensity graph of the colour output from the green OLEDs shows that ZAZ electrodes allow for a broader spectral output in the green wavelength region of peak photopic sensitivity compared to ITO. The results have implications for electrode choice in display technology.
ContributorsSivaramakrishnan, Karthik (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter K. (Committee member) / Newman, Nathan (Committee member) / Theodore, David N (Committee member) / Arizona State University (Publisher)
Created2010
153981-Thumbnail Image.png
Description
In this work a newly fabricated organic solar cell based on a composite of fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) and regioregular poly (3-hexylthiophene) (P3HT) with an added interfacial layer of AgOx in between the PEDOT:PSS layer and the ITO layer is investigated. Previous equivalent circuit models are

In this work a newly fabricated organic solar cell based on a composite of fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) and regioregular poly (3-hexylthiophene) (P3HT) with an added interfacial layer of AgOx in between the PEDOT:PSS layer and the ITO layer is investigated. Previous equivalent circuit models are discussed and an equivalent circuit model is proposed for the fabricated device. Incorporation of the AgOx interfacial layer shows an increase in fill factor (by 33%) and power conversion efficiency (by 28%). Moreover proper correlation has been achieved between the experimental and simulated I-V plots. The simulation shows that device characteristics can be explained with accuracy by the proposed model.
ContributorsHossain, Nazmul (Author) / Alford, Terry L. (Thesis advisor) / Theodore, David (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
154352-Thumbnail Image.png
Description
Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (τf) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures,

Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (τf) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures, the microwave loss in these dielectric materials is dominated by electron paramagnetic resonance (EPR) loss, which results from the spin-excitations of d-shell electron spins in exchange-coupled clusters. We show that the origin of the observed magnetically-induced shifts in the dielectric resonator frequency originates from the same mechanism, as described by the Kramers-Kronig relations. The temperature coefficient of resonator frequency, τf, is related to three material parameters according to the equation, τf = - (½ τε + ½ τµ + αL), where τε, τµ, and αL are the temperature coefficient of dielectric constant, magnetic permeability, and lattice constant, respectively. Each of these parameters for dielectric materials of interest are measured experimentally. These results, in combination with density functional simulations, developed a much improved understanding of the fundamental mechanisms responsible for τf. The same experimental methods have been used to characterize in-situ the physical nature and concentration of performance-degrading point defects in the dielectrics of superconducting planar microwave resonators.
ContributorsZhang, Shengke (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry L. (Committee member) / Chamberlin, Ralph (Committee member) / Flores, Marco (Committee member) / Singh, Rakesh K. (Committee member) / Arizona State University (Publisher)
Created2016
158128-Thumbnail Image.png
Description
III-V-bismide semiconductor alloys are a class of materials with applications in the mid and long wave infrared spectrum. The quaternary alloy InAsSbBi is attractive because it can be grown lattice-matched to commercially available GaSb substrates, and the adjustment of the Bi and Sb mole fractions enables both lattice constant

III-V-bismide semiconductor alloys are a class of materials with applications in the mid and long wave infrared spectrum. The quaternary alloy InAsSbBi is attractive because it can be grown lattice-matched to commercially available GaSb substrates, and the adjustment of the Bi and Sb mole fractions enables both lattice constant and bandgap to be tuned independently. This dissertation provides a comprehensive study of the surface morphology and the structural and chemical properties of InAsSbBi alloys grown by molecular beam epitaxy.

210 nm thick InAsSbBi layers grown at temperatures from 280 °C to 430 °C on (100) on-axis, (100) offcut 1° to (011), and (100) offcut 4° to (111)A GaSb substrates are investigated using Rutherford back scattering, X-ray diffraction, transmission electron microscopy, Nomarski optical microscopy, atomic force microscopy, and photoluminescence spectroscopy. The results indicate that the layers are coherently strained and contain dilute Bi mole fractions.

Large surface droplets with diameters and densities on the order of 3 µm and 106 cm-2 are observed when the growth is performed with As overpressures around 1%. Preferential orientation of the droplets occurs along the [011 ̅] step edges offcut (100) 1° to (011) substrate. The surface droplets are not observed when the As overpressure is increased to 4%. Small crystalline droplets with diameters and densities on the order of 70 nm and 1010 cm-2 are observed between the large droplets for the growth at 430°C. Analysis of one of the small droplets indicates a misoriented zinc blende structure composed of In, Sb, and Bi, with a 6.543 ± 0.038 Å lattice constant.

Lateral variation in the Bi mole fraction is observed in InAsSbBi grown at high temperature (400 °C, 420 °C) on (100) on-axis and (100) offcut 4° to (111)A substrates, but is not observed for growth at 280 °C or on (100) substrates that are offcut 1° to (011). Improved crystal and optical quality is observed in the high temperature grown InAsSbBi and CuPtB type atomic ordering on the {111}B planes is observed in the low temperature grown InAsSbBi. Strain induced tilt is observed in coherently strained InAsSbBi grown on offcut substrates.
ContributorsKosireddy, Rajeev Reddy (Author) / Johnson, Shane R (Thesis advisor) / Smith, David J. (Committee member) / Alford, Terry L. (Committee member) / Soignard, Emmanuel (Committee member) / Arizona State University (Publisher)
Created2020
158369-Thumbnail Image.png
Description
The chemical, structural, and electrical properties of niobium-silicon, niobium-germanium, and YBCO-dielectric interfaces are characterized. Reduction in the concentration of interfacial defects in these structures can improve the performance of (i) many devices including low-loss coplanar, microstrip, and stripline microwave resonators used in next-generation cryogenic communication, sensor, and quantum information technologies

The chemical, structural, and electrical properties of niobium-silicon, niobium-germanium, and YBCO-dielectric interfaces are characterized. Reduction in the concentration of interfacial defects in these structures can improve the performance of (i) many devices including low-loss coplanar, microstrip, and stripline microwave resonators used in next-generation cryogenic communication, sensor, and quantum information technologies and (ii) layers used in device isolation, inter-wiring dielectrics, and passivation in microwave and Josephson junction circuit fabrication.

Methods were developed to synthesize amorphous-Ge (a-Ge) and homoepitaxial-Si dielectric thin-films with loss tangents of 1–2×10 -6 and 0.6–2×10 -5 at near single-photon powers and sub-Kelvin temperatures (≈40 mK), making them potentially a better choice over undoped silicon and sapphire substrates used in quantum devices. The Nb/Ge interface has 20 nm of chemical intermixing, which is reduced by a factor of four using 10 nm Ta diffusion layers. Niobium coplanar resonators using this structure exhibit reduced microwave losses.

The nature and concentration of defects near Nb-Si interfaces prepared with commonly-used Si surface treatments were characterized. All samples have H, C, O, F, and Cl in the Si within 50 nm of the interface, and electrically active defects with activation energies of 0.147, 0.194, 0.247, 0.339, and 0.556 eV above the valence band maximum (E vbm ), with concentrations dominated by a hole trap at E vbm +0.556 eV (presumably Nb Si ). The optimum surface treatment is an HF etch followed by an in-situ 100 eV Ar ion mill. RCA etches, and higher energy ion milling processes increase the concentration of electrically active defects.

A thin SrTiO 3 buffer layer used in YBa 2 Cu 3 O 7-δ superconductor/high-performance Ba(Zn 1/3 Ta 2/3 )O 3 and Ba(Cd 1/3 Ta 2/3 )O 3 microwave dielectric trilayers improves the structural quality of the layers and results in 90 K superconductor critical temperatures. This advance enables the production of more compact high-temperature superconductor capacitors, inductors, and microwave microstrip and stripline devices.
ContributorsKopas, Cameron Joseph (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry L. (Committee member) / Carpenter, Ray W (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2020