Matching Items (307)
Filtering by

Clear all filters

149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
149998-Thumbnail Image.png
Description
As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as

As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as the device performance by inserting an interlayer between the metal cathode and the active layer. Titanium oxide and a novel nitrogen doped titanium oxide were compared and TiOxNy capped device shown a superior performance and stability to TiOx capped one. A unique light anneal effect on the interfacial layer was discovered first time and proved to be the trigger of the enhancement of both device reliability and efficiency. The efficiency was improved by 300% and the device can retain 73.1% of the efficiency with TiOxNy when normal device completely failed after kept for long time. Photoluminescence indicted an increased charge disassociation rate at TiOxNy interface. External quantum efficiency measurement also inferred a significant performance enhancement in TiOxNy capped device, which resulted in a higher photocurrent. X-ray photoelectron spectrometry was performed to explain the impact of light doping on optical band gap. Atomic force microscopy illustrated the effect of light anneal on quantum dot polymer surface. The particle size is increased and the surface composition is changed after irradiation. The mechanism for performance improvement via a TiOx based interlayer was discussed based on a trap filling model. Then Tunneling AFM was performed to further confirm the reliability of interlayer capped organic photovoltaic devices. As a powerful tool based on SPM technique, tunneling AFM was able to explain the reason for low efficiency in non-capped inverted organic photovoltaic devices. The local injection properties as well as the correspondent topography were compared in organic solar cells with or without TiOx interlayer. The current-voltage characteristics were also tested at a single interested point. A severe short-circuit was discovered in non capped devices and a slight reverse bias leakage current was also revealed in TiOx capped device though tunneling AFM results. The failure reason for low stability in normal devices was also discussed comparing to capped devices.
ContributorsYu, Jialin (Author) / Jabbour, Ghassan E. (Thesis advisor) / Alford, Terry L. (Thesis advisor) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2011
150039-Thumbnail Image.png
Description
The intent of this research is to determine if cool roofs lead to increased energy use in the U.S. and if so, in what climates. Directed by the LEED environmental building rating system, cool roofs are increasingly specified in an attempt to mitigate urban heat island effect. A typical single

The intent of this research is to determine if cool roofs lead to increased energy use in the U.S. and if so, in what climates. Directed by the LEED environmental building rating system, cool roofs are increasingly specified in an attempt to mitigate urban heat island effect. A typical single story retail building was simulated using eQUEST energy software across seven different climatic zones in the U.S.. Two roof types are varied, one with a low solar reflectance index of 30 (typical bituminous roof), and a roof with SRI of 90 (high performing membrane roof). The model also varied the perimeter / core fraction, internal loads, and schedule of operations. The data suggests a certain point at which a high SRI roofing finish results in energy penalties over the course of the year in climate zones which are heating driven. Climate zones 5 and above appear to be the flipping point, beyond which the application of a high SRI roof creates sufficient heating penalties to outweigh the cooling energy benefits.
ContributorsLee, John (Author) / Bryan, Harvey (Thesis advisor) / Marlin, Marlin (Committee member) / Ramalingam, Muthukumar (Committee member) / Arizona State University (Publisher)
Created2011
149985-Thumbnail Image.png
Description
The high strength to weight ratio of woven fabric offers a cost effective solution to be used in a containment system for aircraft propulsion engines. Currently, Kevlar is the only Federal Aviation Administration (FAA) approved fabric for usage in systems intended to mitigate fan blade-out events. This research builds on

The high strength to weight ratio of woven fabric offers a cost effective solution to be used in a containment system for aircraft propulsion engines. Currently, Kevlar is the only Federal Aviation Administration (FAA) approved fabric for usage in systems intended to mitigate fan blade-out events. This research builds on an earlier constitutive model of Kevlar 49 fabric developed at Arizona State University (ASU) with the addition of new and improved modeling details. Latest stress strain experiments provided new and valuable data used to modify the material model post peak behavior. These changes reveal an overall improvement of the Finite Element (FE) model's ability to predict experimental results. First, the steel projectile is modeled using Johnson-Cook material model and provides a more realistic behavior in the FE ballistic models. This is particularly noticeable when comparing FE models with laboratory tests where large deformations in projectiles are observed. Second, follow-up analysis of the results obtained through the new picture frame tests conducted at ASU provides new values for the shear moduli and corresponding strains. The new approach for analysis of data from picture frame tests combines digital image analysis and a two-level factorial optimization formulation. Finally, an additional improvement in the material model for Kevlar involves checking the convergence at variation of mesh density of fabrics. The study performed and described herein shows the converging trend, therefore validating the FE model.
ContributorsMorea, Mihai I (Author) / Rajan, Subramaniam D. (Thesis advisor) / Arizona State University (Publisher)
Created2011
149681-Thumbnail Image.png
Description
The trend towards using recycled materials on new construction projects is growing as the cost for construction materials are ever increasing and the awareness of the responsibility we have to be good stewards of our environment is heightened. While recycled asphalt is sometimes used in pavements, its use as structural

The trend towards using recycled materials on new construction projects is growing as the cost for construction materials are ever increasing and the awareness of the responsibility we have to be good stewards of our environment is heightened. While recycled asphalt is sometimes used in pavements, its use as structural fill has been hindered by concern that it is susceptible to large long-term deformations (creep), preventing its use for a great many geotechnical applications. While asphalt/soil blends are often proposed as an alternative to 100% recycled asphalt fill, little data is available characterizing the geotechnical properties of recycled asphalt soil blends. In this dissertation, the geotechnical properties for five different recycled asphalt soil blends are characterized. Data includes the particle size distribution, plasticity index, creep, and shear strength for each blend. Blends with 0%, 25%, 50%, 75% and 100% recycled asphalt were tested. As the recycled asphalt material used for testing had particles sizes up to 1.5 inches, a large 18 inch diameter direct shear apparatus was used to determine the shear strength and creep characteristics of the material. The results of the testing program confirm that the creep potential of recycled asphalt is a geotechnical concern when the material is subjected to loads greater than 1500 pounds per square foot (psf). In addition, the test results demonstrate that the amount of soil blended with the recycled asphalt can greatly influence the creep and shear strength behavior of the composite material. Furthermore, there appears to be an optimal blend ratio where the composite material had better properties than either the recycled asphalt or virgin soil alone with respect to shear strength.
ContributorsSchaper, Jeffery M (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra L. (Committee member) / Zapata, Claudia E (Committee member) / Arizona State University (Publisher)
Created2011
149770-Thumbnail Image.png
Description
Restaurants have a cumulative impact on the environment, economy, and society. The majority of restaurants are small-to-medium enterprises (SMEs). Review of sustainability and industry literature revealed that considering restaurants as businesses with sustainable development options is the most appropriate way to evaluate their sustainable practices or lack thereof. Sustainable development

Restaurants have a cumulative impact on the environment, economy, and society. The majority of restaurants are small-to-medium enterprises (SMEs). Review of sustainability and industry literature revealed that considering restaurants as businesses with sustainable development options is the most appropriate way to evaluate their sustainable practices or lack thereof. Sustainable development is the means by which a company progresses towards achieving an identified set of sustainability goals and harnesses competitive advantage. The purpose of this thesis is to identify barriers to implementing sustainable practices in restaurants, and explore ways that restaurateurs can incorporate sustainable business practices. Energy consumption, water use, waste production, and food throughput are the four sustainability indicators addressed in this thesis. Interviews were conducted with five Tempe, Arizona restaurants, two of which consider their operations to be sustainable, and three of which are traditional restaurants. Results show that for traditional restaurants, the primary barriers to implementing sustainable business practices are cost, lack of awareness, and space. For sustainability-marketed restaurants, the barriers included a lack of knowledge or legal concerns. The sustainability-marketed restaurants have energy-efficient equipment and locally source a majority of their food purchases. There is a marked difference between the two types of restaurants in perception of barriers to sustainable business practices. I created a matrix to identify whether each indicator metric was applicable and present at a particular restaurant, and the potential barriers to implementing sustainable practices in each of the four indicator areas. Restaurants can use the assessment matrix to compare their current practices with sustainable practices and find ways to implement new or enhance existing sustainable practices. Identifying the barriers from within restaurants increases our understanding of the reasons why sustainable practices are not automatically adopted by SMEs. The assessment matrix can help restaurants overcome barriers to achieving sustainability by highlighting how to incorporate sustainable business practices.
ContributorsFreeman, Emily McConnell (Author) / Eakin, Hallie (Thesis advisor) / Basile, George (Thesis advisor) / Williams, Eric D. (Committee member) / Arizona State University (Publisher)
Created2011
150370-Thumbnail Image.png
Description
Individuals' experiences, environment, and education greatly impact their entire being. Similarly, a designer is affected by these elements, which impacts how, what and why they design. In order for design education to generate designers who are more socially aware problem solvers, that education must introduce complex social matters and not

Individuals' experiences, environment, and education greatly impact their entire being. Similarly, a designer is affected by these elements, which impacts how, what and why they design. In order for design education to generate designers who are more socially aware problem solvers, that education must introduce complex social matters and not just design skills. Traditionally designers learned through apprenticing a master. Most design education has moved away from this traditional model and has begun incorporating a well-rounded program of study, yet there are still more improvements to be made. This research proposes a new Integrated Transformational Experience Model, ITEM, for design education which will be rooted in sustainability, cultural integration, social embeddedness, and discipline collaboration. The designer will be introduced to new ideas and experiences from the immersion of current social issues where they will gain experience creating solutions to global problems enabling them to become catalysts of change. This research is based on interviews with industrial design students to gain insights, benefits and drawbacks of the current model of design education. This research will expand on the current model for design education, combining new ideas that will shed light on the future of design disciplines through the education and motivation of designers. The desired outcome of this study is to incorporate hands on learning through social issues in design classrooms, identify ways to educate future problem solvers, and inspire more research on this issue.
ContributorsWingate, Andrea (Author) / Takamura, John (Thesis advisor) / Stamm, Jill (Committee member) / Bender, Diane (Committee member) / Arizona State University (Publisher)
Created2011
150393-Thumbnail Image.png
Description
ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D

ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D GB network to look into the effects of GB characteristics on this phenomenon, with emphasis on conditions that can lead to percolation. A finite element model was created based on the microstructure of a depleted UO2 sample characterized by Electron Backscattering Diffraction (EBSD). The GBs were categorized into high (D2), low (D1) and bulk diffusivity (Dbulk) based on their misorientation angles and Coincident Site Lattice (CSL) types. The simulation was run using different diffusivity ratios (D2/Dbulk) ranging from 1 to 10^8. The model was set up in three ways: constant temperature case, temperature gradient effects and window methods that mimic the environments in a Light Water Reactor (LWR). In general, the formation of percolation paths was observed at a ratio higher than 10^4 in the measured GB network, which had a 68% fraction of high diffusivity GBs. The presence of temperature gradient created an uneven concentration distribution and decreased the overall mass flux. Finally, radial temperature and fission gas concentration profiles were obtained for a fuel pellet in operation using an approximate 1-D model. The 100 µm long microstructurally explicit model was used to simulate, to the scale of a real UO2 pellet, the mass transport at different radial positions, with boundary conditions obtained from the profiles. Stronger percolation effects were observed at the intermediate and periphery position of the pellet. The results also showed that highest mass flux happens at the edge of a pellet at steady state to accommodate for the sharp concentration drop.
ContributorsLim, Harn Chyi (Author) / Peralta, Pedro (Thesis advisor) / Dey, Sandwip (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
149861-Thumbnail Image.png
Description
Community Supported Agriculture programs (CSAs) have become a viable local source of fresh agricultural goods and represent a potentially new way to improve fruit and vegetable consumption among individuals and families. Studies concerning CSAs have focused mainly on characteristics of the typical CSA member and motivations and barriers to join

Community Supported Agriculture programs (CSAs) have become a viable local source of fresh agricultural goods and represent a potentially new way to improve fruit and vegetable consumption among individuals and families. Studies concerning CSAs have focused mainly on characteristics of the typical CSA member and motivations and barriers to join a CSA program. The purpose of this study was to examine whether behavior and attitudinal differences existed between current CSA members and a nonmember control group. Specifically, ecological attitudes, eating out behaviors, composting frequency, and family participation in food preparation were assessed. This study utilized an online survey comprising items from previous survey research as well as newly created items. A total of 115 CSA member and 233 control survey responses were collected. CSA members were more likely to be older, have more education, and have a higher income than the control group. The majority of CSA members surveyed were female, identified as non-Hispanic and Caucasian, earned a higher income, and reported being the primary food shopper and preparer. The majority of members also noted that the amount and variety of fruits and vegetables they ate and served their family increased as a result of joining a CSA. CSA members were more ecologically minded compared to the control group. Frequency of eating out was not significantly different between groups. However, eating out behaviors were different between income categories. CSA members spent significantly more money at each meal eaten away from home and spent significantly more money on eating out each week. In both cases, controlling for income attenuated differences between groups. CSA members composted at a significantly higher rate and took part in other eco-friendly behaviors more often than the control group. Finally, no significant difference was evident between the two groups when analyzing family involvement in food preparation and meal decision-making. Overall, some significant attitudinal and behavioral differences existed between CSA members and non-CSA members. Further research is necessary to examine other distinctions between the two groups and whether these differences occur as a result of CSA membership.
ContributorsMacMillan Uribe, Alexandra L (Author) / Wharton, Christopher (Christopher Mack), 1977- (Thesis advisor) / Winham, Donna (Committee member) / Eakin, Hallie (Committee member) / Arizona State University (Publisher)
Created2011
149869-Thumbnail Image.png
Description
Fish farming is a fast growing industry, which, although necessary to feed an ever growing worldwide population, has its share of negative environmental consequences, including the release of drugs and other waste into the ocean, the use of fish caught from the ocean to feed farm raised fish, and the

Fish farming is a fast growing industry, which, although necessary to feed an ever growing worldwide population, has its share of negative environmental consequences, including the release of drugs and other waste into the ocean, the use of fish caught from the ocean to feed farm raised fish, and the escape of farm raised fish into natural bodies of water. However, the raising of certain types of fish, such as tilapia, seems to be an environmentally better proposition than raising other types of fish, such as salmon. This paper will explore the problems associated with fish farming, as well as offer a model, based on the literature, and interviews with fish farmers, to make small-scale fish farming both more environmentally, and more economically, sustainable. This paper culminates with a model for small-scale, specifically semi-subsistence, fish farmers. This model emphasizes education of the fish farmers, as well as educators learning from the fish farmers they interact with. The goal of this model is to help these fish farmers become both more environmentally and economically sustainable.
ContributorsLongoni, Robert A (Author) / Parmentier, Mary Jane (Thesis advisor) / Grossman, Gary (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011