Matching Items (813)
Filtering by

Clear all filters

151687-Thumbnail Image.png
Description

In recent years, an increase of environmental temperature in urban areas has raised many concerns. These areas are subjected to higher temperature compared to the rural surrounding areas. Modification of land surface and the use of materials such as concrete and/or asphalt are the main factors influencing the surface energy

In recent years, an increase of environmental temperature in urban areas has raised many concerns. These areas are subjected to higher temperature compared to the rural surrounding areas. Modification of land surface and the use of materials such as concrete and/or asphalt are the main factors influencing the surface energy balance and therefore the environmental temperature in the urban areas. Engineered materials have relatively higher solar energy absorption and tend to trap a relatively higher incoming solar radiation. They also possess a higher heat storage capacity that allows them to retain heat during the day and then slowly release it back into the atmosphere as the sun goes down. This phenomenon is known as the Urban Heat Island (UHI) effect and causes an increase in the urban air temperature. Many researchers believe that albedo is the key pavement affecting the urban heat island. However, this research has shown that the problem is more complex and that solar reflectivity may not be the only important factor to evaluate the ability of a pavement to mitigate UHI. The main objective of this study was to analyze and research the influence of pavement materials on the near surface air temperature. In order to accomplish this effort, test sections consisting of Hot Mix Asphalt (HMA), Porous Hot Mix asphalt (PHMA), Portland Cement Concrete (PCC), Pervious Portland Cement Concrete (PPCC), artificial turf, and landscape gravels were constructed in the Phoenix, Arizona area. Air temperature, albedo, wind speed, solar radiation, and wind direction were recorded, analyzed and compared above each pavement material type. The results showed that there was no significant difference in the air temperature at 3-feet and above, regardless of the type of the pavement. Near surface pavement temperatures were also measured and modeled. The results indicated that for the UHI analysis, it is important to consider the interaction between pavement structure, material properties, and environmental factors. Overall, this study demonstrated the complexity of evaluating pavement structures for UHI mitigation; it provided great insight on the effects of material types and properties on surface temperatures and near surface air temperature.

ContributorsPourshams-Manzouri, Tina (Author) / Kaloush, Kamil (Thesis advisor) / Wang, Zhihua (Thesis advisor) / Zapata, Claudia E. (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151718-Thumbnail Image.png
Description
The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a

The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a reputation score for each tweet that is based not just on content, but also additional information from the Twitter ecosystem that consists of users, tweets, and the web pages that tweets link to. This information is obtained by modeling the Twitter ecosystem as a three-layer graph. The reputation score is used to power two novel methods of ranking tweets by propagating the reputation over an agreement graph based on tweets' content similarity. Additionally, I show how the agreement graph helps counter tweet spam. An evaluation of my method on 16~million tweets from the TREC 2011 Microblog Dataset shows that it doubles the precision over baseline Twitter Search and achieves higher precision than current state of the art method. I present a detailed internal empirical evaluation of RAProp in comparison to several alternative approaches proposed by me, as well as external evaluation in comparison to the current state of the art method.
ContributorsRavikumar, Srijith (Author) / Kambhampati, Subbarao (Thesis advisor) / Davulcu, Hasan (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2013
152234-Thumbnail Image.png
Description
One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of

One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of the terrain is needed prior to traversal. The Digital Terrain Model (DTM) provides information about the terrain along with waypoints for the rover to traverse. However, traversing a set of waypoints linearly is burdensome, as the rovers would constantly need to modify their orientation as they successively approach waypoints. Although there are various solutions to this problem, this research paper proposes the smooth traversability of the rover using splines as a quick and easy implementation to traverse a set of waypoints. In addition, a rover was used to compare the smoothness of the linear traversal along with the spline interpolations. The data collected illustrated that spline traversals had a less rate of change in the velocity over time, indicating that the rover performed smoother than with linear paths.
ContributorsKamasamudram, Anurag (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152236-Thumbnail Image.png
Description
Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary

Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary development and delivery, and encourages rapid and flexible response to change. However, several problems prevent Continuous Delivery to be introduced into education world. Taking into the consideration of the barriers, we propose a new Cloud based Continuous Delivery Software Developing System. This system is designed to fully utilize the whole life circle of software developing according to Continuous Delivery concepts in a virtualized environment in Vlab platform.
ContributorsDeng, Yuli (Author) / Huang, Dijiang (Thesis advisor) / Davulcu, Hasan (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2013
152207-Thumbnail Image.png
Description
Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis,

Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis, where CO2 benefits occurring during use of the PV panels is found to exceed emissions generated during the PV manufacturing phase including materials extraction and manufacture of the PV panels prior to installation. However, this approach neglects to recognize that the environmental costs of CO2 release during manufacture are incurred early, while environmental benefits accrue later. Thus, where specific policy targets suggest meeting CO2 reduction targets established by a certain date, rapid PV deployment may have counter-intuitive, albeit temporary, undesired consequences. Thus, on a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood. This phenomenon is particularly acute when PV manufacture occurs in areas using CO2 intensive energy sources (e.g., coal), but deployment occurs in areas with less CO2 intensive electricity sources (e.g., hydro). This thesis builds a dynamic Cumulative Radiative Forcing (CRF) model to examine the inter-temporal warming impacts of PV deployments in three locations: California, Wyoming and Arizona. The model includes the following factors that impact CRF: PV deployment rate, choice of PV technology, pace of PV technology improvements, and CO2 intensity in the electricity mix at manufacturing and deployment locations. Wyoming and California show the highest and lowest CRF benefits as they have the most and least CO2 intensive grids, respectively. CRF payback times are longer than CO2 payback times in all cases. Thin film, CdTe PV technologies have the lowest manufacturing CO2 emissions and therefore the shortest CRF payback times. This model can inform policies intended to fulfill time-sensitive CO2 mitigation goals while minimizing short term radiative forcing.
ContributorsTriplican Ravikumar, Dwarakanath (Author) / Seager, Thomas P (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Chester, Mikhail V (Committee member) / Sinha, Parikhit (Committee member) / Arizona State University (Publisher)
Created2013
152208-Thumbnail Image.png
Description
Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households making more trips in larger vehicles with lower fuel economy. During the 1990s, SUVs were the fastest growing segment of the automotive industry, comprising 7% of the total light vehicle market in 1990, and 25% in 2005. More recently, due to rising oil prices, greater awareness to environmental sensitivity, the desire to reduce dependence on foreign oil, and the availability of new vehicle technologies, many households are considering the use of newer vehicles with better fuel economy, such as hybrids and electric vehicles, over the use of the SUV or low fuel economy vehicles they may already own. The goal of this research is to examine how vehicle miles traveled, fuel consumption and emissions may be reduced through shifts in vehicle type choice behavior. Using the 2009 National Household Travel Survey data it is possible to develop a model to estimate household travel demand and total fuel consumption. If given a vehicle choice shift scenario, using the model it would be possible to calculate the potential fuel consumption savings that would result from such a shift. In this way, it is possible to estimate fuel consumption reductions that would take place under a wide variety of scenarios.
ContributorsChristian, Keith (Author) / Pendyala, Ram M. (Thesis advisor) / Chester, Mikhail (Committee member) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2013
152177-Thumbnail Image.png
Description
Manufacture of building materials requires significant energy, and as demand for these materials continues to increase, the energy requirement will as well. Offsetting this energy use will require increased focus on sustainable building materials. Further, the energy used in building, particularly in heating and air conditioning, accounts for 40 percent

Manufacture of building materials requires significant energy, and as demand for these materials continues to increase, the energy requirement will as well. Offsetting this energy use will require increased focus on sustainable building materials. Further, the energy used in building, particularly in heating and air conditioning, accounts for 40 percent of a buildings energy use. Increasing the efficiency of building materials will reduce energy usage over the life time of the building. Current methods for maintaining the interior environment can be highly inefficient depending on the building materials selected. Materials such as concrete have low thermal efficiency and have a low heat capacity meaning it provides little insulation. Use of phase change materials (PCM) provides the opportunity to increase environmental efficiency of buildings by using the inherent latent heat storage as well as the increased heat capacity. Incorporating PCM into concrete via lightweight aggregates (LWA) by direct addition is seen as a viable option for increasing the thermal storage capabilities of concrete, thereby increasing building energy efficiency. As PCM change phase from solid to liquid, heat is absorbed from the surroundings, decreasing the demand on the air conditioning systems on a hot day or vice versa on a cold day. Further these materials provide an additional insulating capacity above the value of plain concrete. When the temperature drops outside the PCM turns back into a solid and releases the energy stored from the day. PCM is a hydrophobic material and causes reductions in compressive strength when incorporated directly into concrete, as shown in previous studies. A proposed method for mitigating this detrimental effect, while still incorporating PCM into concrete is to encapsulate the PCM in aggregate. This technique would, in theory, allow for the use of phase change materials directly in concrete, increasing the thermal efficiency of buildings, while negating the negative effect on compressive strength of the material.
ContributorsSharma, Breeann (Author) / Neithalath, Narayanan (Thesis advisor) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2013
152179-Thumbnail Image.png
Description
As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite

As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite popular nowadays. They provide tools for modeling, simulation, verification and in some cases automatic code generation for desktop applications, embedded systems and robots. For real-world implementation of models on the actual hardware, those models should be converted into compilable machine code either manually or automatically. Due to the complexity of robotic systems, manual code translation from model to code is not a feasible optimal solution so we need to move towards automated code generation for such systems. MathWorks® offers code generation facilities called Coder® products for this purpose. However in order to fully exploit the power of model-based design and code generation tools for robotic applications, we need to enhance those software systems by adding and modifying toolboxes, files and other artifacts as well as developing guidelines and procedures. In this thesis, an effort has been made to propose a guideline as well as a Simulink® library, StateFlow® interface API and a C/C++ interface API to complete this toolchain for NAO humanoid robots. Thus the model of the hierarchical control architecture can be easily and properly converted to code and built for implementation.
ContributorsRaji Kermani, Ramtin (Author) / Fainekos, Georgios (Thesis advisor) / Lee, Yann-Hang (Committee member) / Sarjoughian, Hessam S. (Committee member) / Arizona State University (Publisher)
Created2013
152132-Thumbnail Image.png
Description
The history of outdoor water use in the Phoenix, Arizona metropolitan area has given rise to a general landscape aesthetic and pattern of residential irrigation that seem in discord with the natural desert environment. While xeric landscaping that incorporates native desert ecology has potential for reducing urban irrigation demand, there

The history of outdoor water use in the Phoenix, Arizona metropolitan area has given rise to a general landscape aesthetic and pattern of residential irrigation that seem in discord with the natural desert environment. While xeric landscaping that incorporates native desert ecology has potential for reducing urban irrigation demand, there are societal and environmental factors that make mesic landscaping, including shade trees and grass lawns, a common choice for residential yards. In either case, there is potential for water savings through irrigation schedules based on fluxes affecting soil moisture in the active plant rooting zone. In this thesis, a point-scale model of soil moisture dynamics was applied to two urban sites in the Phoenix area: one with xeric landscaping, and one with mesic. The model was calibrated to observed soil moisture data from irrigated and non-irrigated sensors, with local daily precipitation and potential evapotranspiration records as model forcing. Simulations were then conducted to investigate effects of irrigation scheduling, plant stress parameters, and precipitation variability on soil moisture dynamics, water balance partitioning, and plant water stress. Results indicated a substantial difference in soil water storage capacity at the two sites, which affected sensitivity to irrigation scenarios. Seasonal variation was critical in avoiding unproductive water losses at the xeric site, and allowed for small water savings at the mesic site by maintaining mild levels of plant stress. The model was also used to determine minimum annual irrigation required to achieve specified levels of plant stress at each site using long-term meteorological records. While the xeric site showed greater potential for water savings, a bimodal schedule consisting of low winter and summer irrigation was identified as a means to conserve water at both sites, with moderate levels of plant water stress. For lower stress levels, potential water savings were found by fixing irrigation depth and seasonally varying the irrigation interval, consistent with municipal recommendations in the Phoenix metropolitan area. These results provide a deeper understanding of the ecohydrologic differences between the two types of landscape treatments, and can assist water and landscape managers in identifying opportunities for water savings in desert urban areas.
ContributorsVolo, Thomas J (Author) / Vivoni, Enrique R (Thesis advisor) / Ruddell, Benjamin L (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2013
152084-Thumbnail Image.png
Description
This research presents an analysis of the main institutions and economic incentives that drive farmers behaviors on water use in the Chancay-Lambayeque basin, located in Lambayeque (Peru), a semi arid area of great agricultural importance. I focus my research on identifying the underlying causes of non-collaborative behaviors in regard to

This research presents an analysis of the main institutions and economic incentives that drive farmers behaviors on water use in the Chancay-Lambayeque basin, located in Lambayeque (Peru), a semi arid area of great agricultural importance. I focus my research on identifying the underlying causes of non-collaborative behaviors in regard to water appropriation and infrastructure provisioning decision that generates violent conflicts between users. Since there is not an agreed and concrete criteria to assess "sustainability" I used economic efficiency as my evaluative criteria because, even though this is not a sufficient condition to achieve sustainability it is a necessary one, and thus achieving economic efficiency is moving towards sustainable outcomes. Water management in the basin is far from being economic efficient which means that there is some room for improving social welfare. Previous studies of the region have successfully described the symptoms of this problem; however, they did not focus their study on identifying the causes of the problem. In this study, I describe and analyze how different rules and norms (institutions) define farmers behaviors related to water use. For this, I use the Institutional Analysis and Development framework and a dynamic game theory model to analyze how biophysical attributes, community attributes and rules of the system combined with other factors, can affect farmers actions in regard to water use and affect the sustainability of water resources. Results show that water rights are the factor that is fundamental to the problem. Then, I present an outline for policy recommendation, which includes a revision of water rights and related rules and policies that could increase the social benefits with the use of compensation mechanisms to reach economic efficiency. Results also show that commonly proposed solutions, as switch to less water intensive and more added value crops, improvement in the agronomic and entrepreneurial knowledge, or increases in water tariffs, can mitigate or exacerbate the loss of benefits that come from the poor incentives in the system; but they do not change the nature of the outcome.
ContributorsRubinos, Cathy (Author) / Eakin, Hallie (Committee member) / Abbot, Joshua K (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2013