Matching Items (832)
Filtering by

Clear all filters

149861-Thumbnail Image.png
Description
Community Supported Agriculture programs (CSAs) have become a viable local source of fresh agricultural goods and represent a potentially new way to improve fruit and vegetable consumption among individuals and families. Studies concerning CSAs have focused mainly on characteristics of the typical CSA member and motivations and barriers to join

Community Supported Agriculture programs (CSAs) have become a viable local source of fresh agricultural goods and represent a potentially new way to improve fruit and vegetable consumption among individuals and families. Studies concerning CSAs have focused mainly on characteristics of the typical CSA member and motivations and barriers to join a CSA program. The purpose of this study was to examine whether behavior and attitudinal differences existed between current CSA members and a nonmember control group. Specifically, ecological attitudes, eating out behaviors, composting frequency, and family participation in food preparation were assessed. This study utilized an online survey comprising items from previous survey research as well as newly created items. A total of 115 CSA member and 233 control survey responses were collected. CSA members were more likely to be older, have more education, and have a higher income than the control group. The majority of CSA members surveyed were female, identified as non-Hispanic and Caucasian, earned a higher income, and reported being the primary food shopper and preparer. The majority of members also noted that the amount and variety of fruits and vegetables they ate and served their family increased as a result of joining a CSA. CSA members were more ecologically minded compared to the control group. Frequency of eating out was not significantly different between groups. However, eating out behaviors were different between income categories. CSA members spent significantly more money at each meal eaten away from home and spent significantly more money on eating out each week. In both cases, controlling for income attenuated differences between groups. CSA members composted at a significantly higher rate and took part in other eco-friendly behaviors more often than the control group. Finally, no significant difference was evident between the two groups when analyzing family involvement in food preparation and meal decision-making. Overall, some significant attitudinal and behavioral differences existed between CSA members and non-CSA members. Further research is necessary to examine other distinctions between the two groups and whether these differences occur as a result of CSA membership.
ContributorsMacMillan Uribe, Alexandra L (Author) / Wharton, Christopher (Christopher Mack), 1977- (Thesis advisor) / Winham, Donna (Committee member) / Eakin, Hallie (Committee member) / Arizona State University (Publisher)
Created2011
149869-Thumbnail Image.png
Description
Fish farming is a fast growing industry, which, although necessary to feed an ever growing worldwide population, has its share of negative environmental consequences, including the release of drugs and other waste into the ocean, the use of fish caught from the ocean to feed farm raised fish, and the

Fish farming is a fast growing industry, which, although necessary to feed an ever growing worldwide population, has its share of negative environmental consequences, including the release of drugs and other waste into the ocean, the use of fish caught from the ocean to feed farm raised fish, and the escape of farm raised fish into natural bodies of water. However, the raising of certain types of fish, such as tilapia, seems to be an environmentally better proposition than raising other types of fish, such as salmon. This paper will explore the problems associated with fish farming, as well as offer a model, based on the literature, and interviews with fish farmers, to make small-scale fish farming both more environmentally, and more economically, sustainable. This paper culminates with a model for small-scale, specifically semi-subsistence, fish farmers. This model emphasizes education of the fish farmers, as well as educators learning from the fish farmers they interact with. The goal of this model is to help these fish farmers become both more environmentally and economically sustainable.
ContributorsLongoni, Robert A (Author) / Parmentier, Mary Jane (Thesis advisor) / Grossman, Gary (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
149918-Thumbnail Image.png
Description
At first glance, trends in increased hunger and obesity in the United States (US) would seem to represent the result of different causal mechanisms. The United States Department of Agriculture (USDA) reported that nearly 50 million Americans had experienced hunger in 2009. A year later, the Centers for

At first glance, trends in increased hunger and obesity in the United States (US) would seem to represent the result of different causal mechanisms. The United States Department of Agriculture (USDA) reported that nearly 50 million Americans had experienced hunger in 2009. A year later, the Centers for Disease Control and Prevention published a report showing that 68% of the US population was either overweight or obese. Researchers have found that these contrasting trends are actually interrelated. Being so, it is imperative that communities and individuals experiencing problems with food security are provided better access to healthy food options. In response to the need to increase healthy food access, many farmers markets in the US have received funding from the USDA to accept vouchers from federal food security programs, such as the Supplemental Nutrition Assistance Program (SNAP). In Downtown Phoenix, Arizona, one organization accepting vouchers from several programs is the Phoenix Public Market. However, the mere existence of these programs is not enough to establish food security within a community: characteristics of the population and food environments must also be considered. To examine issues of food security and public health, this thesis utilizes geographical information systems (GIS) technology as a tool to analyze specific environments in order to inform program effectiveness and future funding opportunities. Utilizing methods from community-based participatory research (CBPR) and GIS, a mapping project was conducted in partnership with the Market to answer three questions: (1) what is the demographic makeup of the surrounding community? (2) What retailers around the Market also accept food security vouchers? And (3) where are food security offices (SNAP and WIC) located within the area? Both in terms of demographic characteristics and the surrounding food environment, the project results illustrate that the Market is embedded within a population of need, and an area where it could greatly influence community food security.
ContributorsRawson, Brooke (Author) / Vargas, Perla A (Thesis advisor) / Booze, Randy (Committee member) / Vaughan, Suzanne (Committee member) / Arizona State University (Publisher)
Created2011
149921-Thumbnail Image.png
Description
Arizona has an abundant solar resource and technologically mature systems are available to capture it, but solar energy systems are still considered to be an innovative technology. Adoption rates for solar and wind energy systems rise and fall with the political tides, and are relatively low in most rural areas

Arizona has an abundant solar resource and technologically mature systems are available to capture it, but solar energy systems are still considered to be an innovative technology. Adoption rates for solar and wind energy systems rise and fall with the political tides, and are relatively low in most rural areas in Arizona. This thesis tests the hypothesis that a consumer profile developed to characterize the adopters of renewable energy technology (RET) systems in rural Arizona is the same as the profile of other area residents who performed renovations, upgrades or additions to their homes. Residents of Santa Cruz and Cochise Counties who had obtained building permits to either install a solar or wind energy system or to perform a substantial renovation or upgrade to their home were surveyed to gather demographic, psychographic and behavioristic data. The data from 133 survey responses (76 from RET adopters and 57 from non-adopters) provided insights about their decisions regarding whether or not to adopt a RET system. The results, which are statistically significant at the 99% level of confidence, indicate that RET adopters had smaller households, were older and had higher education levels and greater income levels than the non-adopters. The research also provides answers to three related questions: First, are the energy conservation habits of RET adopters the same as those of non-adopters? Second, what were the sources of information consulted and the most important factors that motivated the decision to purchase a solar or wind energy system? And finally, are any of the factors which influenced the decision to live in a rural area in southeastern Arizona related to the decision to purchase a renewable energy system? The answers are provided, along with a series of recommendations that are designed to inform marketers and other promoters of RETs about how to utilize these results to help achieve their goals.
ContributorsPorter, Wayne Eliot (Author) / Reddy, T. Agami (Thesis advisor) / Pasqualetti, Martin (Committee member) / Larson, Kelli (Committee member) / Kennedy, Linda (Committee member) / Arizona State University (Publisher)
Created2011
149965-Thumbnail Image.png
Description
Image processing in canals, rivers and other bodies of water has been a very important concern. This research using Image Processing was performed to obtain a photographic evidence of the data of the site which helps in monitoring the conditions of the water body and the surroundings. Images are captured

Image processing in canals, rivers and other bodies of water has been a very important concern. This research using Image Processing was performed to obtain a photographic evidence of the data of the site which helps in monitoring the conditions of the water body and the surroundings. Images are captured using a digital camera and the images are stored onto a datalogger, these images are retrieved using a cellular/ satellite modem. A MATLAB program was designed to obtain the level of water by just entering the file name into to the program, a curve fit model was created to determine the contrast parameters. The contrast parameters were obtained using the data obtained from the gray scale image mainly the mean and variance of the intensity values. The enhanced images are used to determine the level of water by taking pixel intensity plots along the region of interest. The level of water obtained is accurate to less than 2% of the actual level of water observed from the image. High speed imaging in micro channels have various application in industrial field, medical field etc. In medical field it is tested by using blood samples. The experimental procedure proposed determines the flow duration and the defects observed in these channel using a fluid introduced into the micro channel the fluid being water based dye and whole milk. The viscosity of the fluid shows different types of flow patterns and defects in the micro channel. The defects observed vary from a small effect to the flow pattern to an extreme defect in the channel such as obstruction of flow or deformation in the channel. The sample needs to be further analyzed by SEM to get a better insight on the defects.
ContributorsShasedhara, Abhijeet Bangalore (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011
149829-Thumbnail Image.png
Description
Mostly, manufacturing tolerance charts are used these days for manufacturing tolerance transfer but these have the limitation of being one dimensional only. Some research has been undertaken for the three dimensional geometric tolerances but it is too theoretical and yet to be ready for operator level usage. In this research,

Mostly, manufacturing tolerance charts are used these days for manufacturing tolerance transfer but these have the limitation of being one dimensional only. Some research has been undertaken for the three dimensional geometric tolerances but it is too theoretical and yet to be ready for operator level usage. In this research, a new three dimensional model for tolerance transfer in manufacturing process planning is presented that is user friendly in the sense that it is built upon the Coordinate Measuring Machine (CMM) readings that are readily available in any decent manufacturing facility. This model can take care of datum reference change between non orthogonal datums (squeezed datums), non-linearly oriented datums (twisted datums) etc. Graph theoretic approach based upon ACIS, C++ and MFC is laid out to facilitate its implementation for automation of the model. A totally new approach to determining dimensions and tolerances for the manufacturing process plan is also presented. Secondly, a new statistical model for the statistical tolerance analysis based upon joint probability distribution of the trivariate normal distributed variables is presented. 4-D probability Maps have been developed in which the probability value of a point in space is represented by the size of the marker and the associated color. Points inside the part map represent the pass percentage for parts manufactured. The effect of refinement with form and orientation tolerance is highlighted by calculating the change in pass percentage with the pass percentage for size tolerance only. Delaunay triangulation and ray tracing algorithms have been used to automate the process of identifying the points inside and outside the part map. Proof of concept software has been implemented to demonstrate this model and to determine pass percentages for various cases. The model is further extended to assemblies by employing convolution algorithms on two trivariate statistical distributions to arrive at the statistical distribution of the assembly. Map generated by using Minkowski Sum techniques on the individual part maps is superimposed on the probability point cloud resulting from convolution. Delaunay triangulation and ray tracing algorithms are employed to determine the assembleability percentages for the assembly.
ContributorsKhan, M Nadeem Shafi (Author) / Phelan, Patrick E (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Farin, Gerald (Committee member) / Roberts, Chell (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2011
149880-Thumbnail Image.png
Description
Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that

Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that is not unique and depends on both the characteristics of the rotorcraft and the sediment. The lack of fundamental understanding constrains models and limits development of technologies that could mitigate the adverse effects of brownout. This provides the over-arching motivation of the current work focusing on models of particle-laden sediment beds. The particular focus of the current investigations is numerical modeling of near-surface fluid-particle interactions in turbulent boundary layers with and without coherent vortices superimposed on the background flow, that model rotorcraft downwash. The simulations are performed with two groups of particles having different densities both of which display strong vortex-particle interaction close to the source location. The simulations include cases with inter-particle collisions and gravitational settling. Particle effects on the fluid are ignored. The numerical simulations are performed using an Euler- Lagrange method in which a fractional-step approach is used for the fluid and with the particulate phase advanced using Discrete Particle Simulation. The objectives are to gain insight into the fluid-particle dynamics that influence transport near the bed by analyzing the competing effects of the vortices, inter-particle collisions, and gravity. Following the introduction of coherent vortices into the domain, the structures convect downstream, dissipate, and then recover to an equilibrium state with the boundary layer. The particle phase displays an analogous return to an equilibrium state as the vortices dissipate and the boundary layer recovers, though this recovery is slower than for the fluid and is sensitive to the particle response time. The effects of inter-particle collisions are relatively strong and apparent throughout the flow, being most effective in the boundary layer. Gravitational settling increases the particle concentration near the wall and consequently increase inter-particle collisions.
ContributorsMorales, Fernando (Author) / Squires, Kyle D. (Thesis advisor) / Wells, Valana L. (Committee member) / Calhoun, Ronald J. (Committee member) / Arizona State University (Publisher)
Created2011
149716-Thumbnail Image.png
Description
This research addresses the ability for neighborhoods to assess resiliency as it applies to their respective local areas. Two demographically and economically contrasting neighborhoods in Glendale, Arizona were studied to understand what residents' value and how those values link to key principles of resiliency. Through this exploratory research, a community-focused

This research addresses the ability for neighborhoods to assess resiliency as it applies to their respective local areas. Two demographically and economically contrasting neighborhoods in Glendale, Arizona were studied to understand what residents' value and how those values link to key principles of resiliency. Through this exploratory research, a community-focused process was created to use these values in order to link them to key principles of resiliency and potential measureable indicators. A literature review was conducted to first assess definitions and key principles of resiliency. Second, it explored cases of neighborhoods or communities that faced a pressure or disaster and responded resiliently based on these general principles. Each case study demonstrated that resiliency at the neighborhood level was important to its ability to survive its respective pressure and emerge stronger. The Heart of Glendale and Thunderbird Palms were the two neighborhoods chosen to test the ability to operationalize neighborhood resiliency in the form of indicators. First, an in-depth interview was conducted with a neighborhood expert to understand each area's strengths and weaknesses and get a context for the neighborhood and how it has developed. Second, a visioning session was conducted with each neighborhood consisting of seven participants to discuss its values and how they relate to key principles of resiliency. The values were analyzed and used to shape locally relevant indicators. The results of this study found that the process of identifying participants' values and linking them to key principles of resiliency is a viable methodology for measuring neighborhood resiliency. It also found that indicators and values differed between the Heart of Glendale, a more economically vulnerable yet ethnically diverse area, than Thunderbird Palms, a more racially homogenous, middle income neighborhood. The Heart of Glendale valued the development of social capital more than Thunderbird Palms which placed a higher value on the condition of the built environment as a vehicle for stimulating vibrancy and resiliency in the neighborhood. However, both neighborhoods highly valued public education and providing opportunities for children to be future leaders in their local communities.
ContributorsAcevedo, Shannon (Author) / Pijawka, K. David (Thesis advisor) / Phillips, Rhonda (Committee member) / Lara-Valencia, Francisco (Committee member) / Arizona State University (Publisher)
Created2011
149718-Thumbnail Image.png
Description
Many studies have shown that access to healthy food in the US is unevenly distributed and that supermarkets and other fresh food retailers are less likely to be located in low-income minority communities, where convenience and dollar stores are more prevalent grocery options. I formed a partnership with Phoenix Revitalization

Many studies have shown that access to healthy food in the US is unevenly distributed and that supermarkets and other fresh food retailers are less likely to be located in low-income minority communities, where convenience and dollar stores are more prevalent grocery options. I formed a partnership with Phoenix Revitalization Corporation, a local community development organization engaged in Central City South, Phoenix, to enhance the community's capacity to meet its community health goals by improving access to healthy food. I used a community-based participatory approach that blended qualitative and quantitative elements to accommodate collaboration between both academic and non-academic partners. Utilizing stakeholder interviews, Nutrition Environment Measures Surveys (NEMS), and mapping to analyze the community's food resources, research revealed that the community lacks adequate access to affordable, nutritious food. Community food stores (n=14) scored an average of 10.9 out of a possible 54 points using the NEMS scoring protocol. The community food assessment is an essential step in improving access to healthy food for CCS residents and provides a baseline for tracking progress to improve residents' food access. Recommendations were drafted by the research partnership to equip and empower the community with strategic, community-specific interventions based on the research findings.
ContributorsCrouch, Carolyn (Author) / Harlan, Sharon (Thesis advisor) / Eakin, Hallie (Committee member) / Aftandilian, David (Committee member) / Arizona State University (Publisher)
Created2011
149654-Thumbnail Image.png
Description
Thermoelectric devices (TED's) continue to be an area of high interest in both thermal management and energy harvesting applications. Due to their compact size, reliable performance, and their ability to accomplish sub-ambient cooling, much effort is being focused on optimized methods for characterization and integration of TED's for future applications.

Thermoelectric devices (TED's) continue to be an area of high interest in both thermal management and energy harvesting applications. Due to their compact size, reliable performance, and their ability to accomplish sub-ambient cooling, much effort is being focused on optimized methods for characterization and integration of TED's for future applications. Predictive modeling methods can only achieve accurate results with robust input physical parameters, therefore TED characterization methods are critical for future development of the field. Often times, physical properties of TED sub-components are very well known, however the "effective" properties of a TED module can be difficult to measure with certainty. The module-level properties must be included in predictive modeling, since these include electrical and thermal contact resistances which are difficult to analytically derive. A unique characterization method is proposed, which offers the ability to directly measure all device-level physical parameters required for accurate modeling. Among many other unique features, the metrology allows the capability to perform an independent validation of empirical parameters by measuring parasitic heat losses. As support for the accuracy of the measured parameters, the metrology output from an off-the-shelf TED is used in a system-level thermal model to predict and validate observed metrology temperatures. Finally, as an extension to the benefits of this metrology, it is shown that resulting data can be used to empirically validate a device-level dimensionless relationship. The output provides a powerful performance prediction tool, since all physical behavior in a performance domain is captured using a single analytical relationship and can be plotted on a singe graph.
ContributorsLofgreen, Kelly (Author) / Phelan, Patrick E (Thesis advisor) / Posner, Jonathan (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2011