Matching Items (13)
Filtering by

Clear all filters

Description
Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids

Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids (post-zygotic). To understand the genetic architecture of these barriers and how they evolve, I studied a genus of wasps that exhibits barriers to gene flow that act both pre- and post-zygotically. Nasonia is a genus of four species of parasitoid wasps that can be hybridized in the laboratory. When two of these species, N. vitripennis and N. giraulti are mated, their offspring suffer, depending on the generation and cross examined, up to 80% mortality during larval development due to incompatible genic interactions between their nuclear and mitochondrial genomes. These species also exhibit pre-zygotic isolation, meaning they are more likely to mate with their own species when given the choice. I examined these two species and their hybrids to determine the genetic and physiological bases of both speciation mechanisms and to understand the evolutionary forces leading to them. I present results that indicate that the oxidative phosphorylation (OXPHOS) pathway, an essential pathway that is responsible for mitochondrial energy generation, is impaired in hybrids of these two species. These results indicate that this impairment is due to the unique evolutionary dynamics of the combined nuclear and mitochondrial origin of this pathway. I also present results showing that, as larvae, these hybrids experience retarded growth linked to the previously observed mortality and I explore possible physiological mechanisms for this. Finally, I show that the pre-mating isolation is due to a change in a single pheromone component in N. vitripennis males, that this change is under simple genetic control, and that it evolved neutrally before being co-opted as a species recognition signal. These results are an important addition to our overall understanding of the mechanisms of speciation and showcase Nasonia as an emerging model for the study of the genetics of speciation.
ContributorsGibson, Joshua D (Author) / Gadau, Jürgen (Thesis advisor) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Verrelli, Brian (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
152461-Thumbnail Image.png
Description
Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance costs and benefits is termed state-dependent foraging (SDF) while behavior

Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance costs and benefits is termed state-dependent foraging (SDF) while behavior that seeks to protect assets of fitness is termed the asset protection principle (APP). A majority of studies examining SDF have focused on the role that energy balance has on the foraging of organisms with high metabolism and high energy demands ("high-energy systems" such as endotherms). In contrast, limited work has examined whether species with low energy use ("low-energy systems" such as vertebrate ectotherms) use an SDF strategy. Additionally, there is a paucity of evidence demonstrating how physiological and environmental factors other than energy balance influence foraging behavior (e.g. hydration state and free-standing water availability). Given these gaps in our understanding of SDF behavior and the APP, I examined the state-dependency and consequences of foraging in a low-energy system occupying a resource-limited environment - the Gila monster (Heloderma suspectum, Cope 1869). In contrast to what has been observed in a wide variety of taxa, I found that Gila monsters do not use a SDF strategy to manage their energy reserves and that Gila monsters do not defend their energetic assets. However, hydration state and free-standing water availability do affect foraging behavior of Gila monsters. Additionally, as Gila monsters become increasingly dehydrated, they reduce activity to defend hydration state. The SDF behavior of Gila monsters appears to be largely driven by the fact that Gila monsters must separately satisfy energy and water demands with food and free-standing water, respectively, in conjunction with the timescale within which Gila monsters balance their energy and water budgets (supra-annually versus annually, respectively). Given these findings, the impact of anticipated changes in temperature and rainfall patterns in the Sonoran Desert are most likely going to pose their greatest risks to Gila monsters through the direct and indirect effects on water balance.
ContributorsWright, Christian (Author) / Denardo, Dale F. (Thesis advisor) / Harrison, Jon (Committee member) / McGraw, Kevin (Committee member) / Sullivan, Brian (Committee member) / Wolf, Blair (Committee member) / Arizona State University (Publisher)
Created2014
153097-Thumbnail Image.png
Description
This dissertation consists of three substantive chapters. The first substantive chapter investigates the premature harvesting problem in fisheries. Traditionally, yield-per-recruit analysis has been used to both assess and address the premature harvesting of fish stocks. However, the fact that fish size often affects the unit price suggests that this approach

This dissertation consists of three substantive chapters. The first substantive chapter investigates the premature harvesting problem in fisheries. Traditionally, yield-per-recruit analysis has been used to both assess and address the premature harvesting of fish stocks. However, the fact that fish size often affects the unit price suggests that this approach may be inadequate. In this chapter, I first synthesize the conventional yield-per-recruit analysis, and then extend this conventional approach by incorporating a size-price function for a revenue-per-recruit analysis. An optimal control approach is then used to derive a general bioeconomic solution for the optimal harvesting of a short-lived single cohort. This approach prevents economically premature harvesting and provides an "optimal economic yield". By comparing the yield- and revenue-per-recruit management strategies with the bioeconomic management strategy, I am able to test the economic efficiency of the conventional yield-per-recruit approach. This is illustrated with a numerical study. It shows that a bioeconomic strategy can significantly improve economic welfare compared with the yield-per-recruit strategy, particularly in the face of high natural mortality. Nevertheless, I find that harvesting on a revenue-per-recruit basis improves management policy and can generate a rent that is close to that from bioeconomic analysis, in particular when the natural mortality is relatively low.

The second substantive chapter explores the conservation potential of a whale permit market under bounded economic uncertainty. Pro- and anti-whaling stakeholders are concerned about a recently proposed, "cap and trade" system for managing the global harvest of whales. Supporters argue that such an approach represents a novel solution to the current gridlock in international whale management. In addition to ethical objections, opponents worry that uncertainty about demand for whale-based products and the environmental benefits of conservation may make it difficult to predict the outcome of a whale share market. In this study, I use population and economic data for minke whales to examine the potential ecological consequences of the establishment of a whale permit market in Norway under bounded but significant economic uncertainty. A bioeconomic model is developed to evaluate the influence of economic uncertainties associated with pro- and anti- whaling demands on long-run steady state whale population size, harvest, and potential allocation. The results indicate that these economic uncertainties, in particular on the conservation demand side, play an important role in determining the steady state ecological outcome of a whale share market. A key finding is that while a whale share market has the potential to yield a wide range of allocations between conservation and whaling interests - outcomes in which conservationists effectively "buy out" the whaling industry seem most likely.

The third substantive chapter examines the sea lice externality between farmed fisheries and wild fisheries. A central issue in the debate over the effect of fish farming on the wild fisheries is the nature of sea lice population dynamics and the wild juvenile mortality rate induced by sea lice infection. This study develops a bioeconomic model that integrates sea lice population dynamics, fish population dynamics, aquaculture and wild capture salmon fisheries in an optimal control framework. It provides a tool to investigate sea lice control policy from the standpoint both of private aquaculture producers and wild fishery managers by considering the sea lice infection externality between farmed and wild fisheries. Numerical results suggest that the state trajectory paths may be quite different under different management regimes, but approach the same steady state. Although the difference in economic benefits is not significant in the particular case considered due to the low value of the wild fishery, I investigate the possibility of levying a tax on aquaculture production for correcting the sea lice externality generated by fish farms.
ContributorsHuang, Biao (Author) / Abbott, Joshua K (Thesis advisor) / Perrings, Charles (Thesis advisor) / Gerber, Leah R. (Committee member) / Muneepeerakul, Rachata (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2014
149757-Thumbnail Image.png
Description
ABSTRACT Water resources in many parts of the world are subject to increasing stress because of (a) the growth in demand caused by population increase and economic development, (b) threats to supply caused by climate and land cover change, and (c) a heightened awareness of the importance of maintaining water

ABSTRACT Water resources in many parts of the world are subject to increasing stress because of (a) the growth in demand caused by population increase and economic development, (b) threats to supply caused by climate and land cover change, and (c) a heightened awareness of the importance of maintaining water supplies to other parts of the ecosystem. An additional factor is the quality of water management. The United States-Mexican border provides an example of poor water management combined with increasing demand for water resources that are both scarce and uncertain. This dissertation focuses on the problem of water management in the border city of Ciudad Juarez, Chihuahua. The city has attracted foreign investment during the last few decades, largely due to relatively low environmental and labor costs, and to a range of tax incentives and concessions. This has led to economic and population growth, but also to higher demand for public services such as water which leads to congestion and scarcity. In particular, as water resources have become scarce, the cost of water supply has increased. The dissertation analyzes the conditions that allow for the efficient use of water resources at sustainable levels of economic activity--i.e., employment and investment. In particular, it analyzes the water management strategies that lead to an efficient and sustainable use of water when the source of water is either an aquifer, or there is conjunctive use of ground and imported water. The first part of the dissertation constructs a model of the interactive effects of water supply, wage rates, inward migration of labor and inward investment of capital. It shows how growing water scarcity affects population growth through the impact it has on real wage rates, and how this erodes the comparative advantage of Ciudad Juarez--low wages--to the point where foreign investment stops. This reveals the very close connection between water management and the level of economic activity in Ciudad Juarez. The second part of the dissertation examines the effect of sustainable and efficient water management strategies on population and economic activity levels under two different settings. In the first Ciudad Juarez relies exclusively on ground water to meet demand--this reflects the current situation of Ciudad Juarez. In the second Ciudad Juarez is able both to import water and to draw on aquifers to meet demand. This situation is motivated by the fact that Ciudad Juarez is considering importing water from elsewhere to maintain its economic growth and mitigate the overdraft of the Bolson del Hueco aquifer. Both models were calibrated on data for Ciudad Juarez, and then used to run experiments with respect to different environmental and economic conditions, and different water management options. It is shown that for a given set of technological, institutional and environmental conditions, the way water is managed in a desert environment determines the long run equilibrium levels of employment, investment and output. It is also shown that the efficiency of water management is consistent with the sustainability of water use and economic activity. Importing water could allow the economy to operate at higher levels of activity than where it relies solely on local aquifers. However, at some scale, water availability will limit the level of economic activity, and the disposable income of the residents of Ciudad Juarez.
ContributorsGarduno Angeles, Gustavo Leopoldo (Author) / Perrings, Charles (Thesis advisor) / Holway, Jim (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2011
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
150816-Thumbnail Image.png
Description
Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate

Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate to massive crop damage and pest control costs. My dissertation focused on Oedaleus asiaticus, a dominant Asian locust, and had three main objectives. First, I identified morphological, physiological, and behavioral characteristics of the migratory ("brown") and non-migratory ("green") phenotypes. I found that brown morphs had longer wings, larger thoraxes and higher metabolic rates compared to green morphs, suggesting that developmental plasticity allows greater migratory capacity in the brown morph of this locust. Second, I tested the hypothesis of a causal link between livestock overgrazing and an increase in migratory swarms of O. asiaticus. Current paradigms generally assume that increased plant nitrogen (N) should enhance herbivore performance by relieving protein-limitation, increasing herbivorous insect populations. I showed, in contrast to this scenario, that host plant N-enrichment and high protein artificial diets decreased the size and viability of O. asiaticus. Plant N content was lowest and locust abundance highest in heavily livestock-grazed fields where soils were N-depleted, likely due to enhanced erosion and leaching. These results suggest that heavy livestock grazing promotes outbreaks of this locust by reducing plant protein content. Third, I tested for the influence of dietary imbalance, in conjunction with high population density, on migratory plasticity. While high population density has clearly been shown to induce the migratory morph in several locusts, the effect of diet has been unclear. I found that locusts reared at high population density and fed unfertilized plants (i.e. high quality plants for O. asiaticus) had the greatest migratory capacity, and maintained a high percent of brown locusts. These results did not support the hypothesis that poor-quality resources increased expression of migratory phenotypes. This highlights a need to develop new theoretical frameworks for predicting how environmental factors will regulate migratory plasticity in locusts and perhaps other insects.
ContributorsCease, Arianne (Author) / Harrison, Jon (Thesis advisor) / Elser, James (Thesis advisor) / DeNardo, Dale (Committee member) / Quinlan, Michael (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2012
155968-Thumbnail Image.png
Description
Cities are hubs for economic and social development, but they are increasingly becoming hotspots of environmental problems and socio-economic inequalities. Because cities result from complex interactions among ecological, social and economic factors, environmental problems and socio-economic inequalities are often spatially interconnected, generating emergent environmental inequity issues due to the unfair

Cities are hubs for economic and social development, but they are increasingly becoming hotspots of environmental problems and socio-economic inequalities. Because cities result from complex interactions among ecological, social and economic factors, environmental problems and socio-economic inequalities are often spatially interconnected, generating emergent environmental inequity issues due to the unfair distribution of environmental quality among socioeconomic groups. Since urban environmental quality is tightly related to the capacity of urban landscapes to provide ecosystem services, optimizing the allocation of ecosystem services within cities is a main goal for moving towards more equitable and sustainable cities. Nevertheless, we often lack the empirical data and specific methods for planning urban landscapes to optimize the provision of ecosystem services. Therefore, the development of knowledge and methods to optimize the provision of ecosystem services is essential for tackling urban environmental problems, reducing environmental inequities, and promoting sustainable cities. The main goal of this dissertation is to generate actionable knowledge for helping decision-makers to optimize the allocation of urban vegetation for reducing environmental inequities through the provision of ecosystem services. The research uses the city of Santiago de Chile as a case study from a Latin-American city. To achieve this goal, I framed my dissertation in four linked research chapters, each of them providing methodological approaches to help link environmental inequity problems with the development of urban planning interventions promoting an equitable provision of urban ecosystem services. These chapters are specifically aimed at providing actionable knowledge for: (1) Identifying the level, distribution, and spatial scales at which environmental inequities are more relevant; (2) Identifying the areas and administrative units where environmental inequities interventions should be prioritized; (3) Identifying optimal areas to allocate vegetation for increasing the provision of urban ecosystem services; (4) Evaluating the role that planned urban vegetation may have in the long-term provision of ecosystem services by natural remnants within the urban landscape. Thus, this dissertation contributes to urban sustainability science by proposing methods and frameworks to address urban environmental inequities through the provision of ecosystem services, but it also provides place-based information that can be readily used for planning urban vegetation in Santiago.
ContributorsFernández, Ignacio C., Ph.D (Author) / Wu, Jingle (Thesis advisor) / Perrings, Charles (Committee member) / Sala, Osvaldo (Committee member) / Simonetti, Javier (Committee member) / Arizona State University (Publisher)
Created2017
155313-Thumbnail Image.png
Description
Large-scale land acquisition (LaSLA), also called "land grabbing" refers to the buying or leasing of large tracts of land, especially in Sub-Saharan Africa (SSA) by foreign investors to produce food and biofuel to send back home. Since 2007, LaSLA has become an important development issue due to the opportunities and

Large-scale land acquisition (LaSLA), also called "land grabbing" refers to the buying or leasing of large tracts of land, especially in Sub-Saharan Africa (SSA) by foreign investors to produce food and biofuel to send back home. Since 2007, LaSLA has become an important development issue due to the opportunities and threats for SSA countries. LaSLA has the potential to create local jobs, transfer technology, build infrastructure, and modernize SSA's agriculture. Nonetheless, it can also aggravate food insecurity, perpetuate corruption, degrade ecosystems, cause conflicts, and displace local communities. What drives LaSLA, what are its impacts on local people, and under what circumstances can we consider it as just and ethical?

To examine what drives LaSLA, I used country level data from 2005 to 2013 on economic conditions, natural resources, business practices, and governance to estimate LaSLA models. I find that LaSLA increases with increasing government effectiveness, land prices, and the ease of doing business, and decreases with stronger regulatory regimes. To assess LaSLA's impacts on local people, I conducted a comparative case study in Tanzania. I compare changes in peoples' livelihood between treatment villages (those experiencing LaSLA) and control villages (those without LaSLA projects). The results show that under current practices, the risks of LaSLA outweigh the benefits to local livelihoods, yet there are potential benefits if LaSLA is implemented correctly.

To philosophically examine whether LaSLA can be considered just and ethical, I apply John Rawls' theory of justice. The analysis indicates that from both procedural and distributive justice perspective, LaSLA currently fails to satisfy Rawlsian principles of justice. From these analyses, I conclude that if implemented correctly, LaSLA can produce a win-win outcome for both investors and host countries. I suggest that strong governance, rigorous environmental and social impact assessment, and inclusion of local people at all levels of LaSLA decision making are critical for sustainable and equitable outcomes.
ContributorsNkansah-Dwamena, Ernest (Author) / Kinzig, Ann (Thesis advisor) / Minteer, Ben (Committee member) / Perrings, Charles (Committee member) / Gabagambi, Damian (Committee member) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2017
154874-Thumbnail Image.png
Description
The closer integration of the world economy has yielded many positive benefits including the worldwide diffusion of innovative technologies and efficiency gains following the widening of international markets. However, closer integration also has negative consequences. Specifically, I focus on the ecology and economics of the spread of species

The closer integration of the world economy has yielded many positive benefits including the worldwide diffusion of innovative technologies and efficiency gains following the widening of international markets. However, closer integration also has negative consequences. Specifically, I focus on the ecology and economics of the spread of species and pathogens. I approach the problem using theoretical and applied models in ecology and economics. First, I use a multi-species theoretical network model to evaluate the ability of dispersal to maintain system-level biodiversity and productivity. I then extend this analysis to consider the effects of dispersal in a coupled social-ecological system where people derive benefits from species. Finally, I estimate an empirical model of the foot and mouth disease risks of trade. By combining outbreak and trade data I estimate the disease risks associated with the international trade in live animals while controlling for the biosecurity measures in place in importing countries and the presence of wild reservoirs. I find that the risks associated with the spread and dispersal of species may be positive or negative, but that this relationship depends on the ecological and economic components of the system and the interactions between them.
ContributorsShanafelt, David William (Author) / Perrings, Charles (Thesis advisor) / Fenichel, Eli (Committee member) / Richards, Timorthy (Committee member) / Janssen, Marco (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2016
149679-Thumbnail Image.png
Description
Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's

Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's pythons (Antaresia childreni). I demonstrated that tight coiling detrimentally creates a hypoxic developmental environment that is alleviated by periodic postural adjustments. Alternatively, maternal postural adjustments detrimentally elevate rates of egg water loss relative to tight coiling. Despite ventilating postural adjustments, the developmental environment becomes increasingly hypoxic near the end of incubation, which reduces embryonic metabolism. I further demonstrated that brooding-induced hypoxia detrimentally affects offspring size, performance, locomotion, and behavior. Thus, parental care in A. childreni comes at a cost to offspring due to intra-offspring tradeoffs (i.e., those that reflect competing offspring needs, such as water balance and respiration). Next, I showed that, despite being unable to intrinsically produce body heat, A. childreni adjust egg-brooding behavior in response to shifts in nest temperature, which enhances egg temperature (e.g., reduced tight coiling during nest warming facilitated beneficial heat transfer to eggs). Last, I demonstrated that A. childreni adaptively adjust their egg-brooding behaviors due to an interaction between nest temperature and humidity. Specifically, females' behavioral response to nest warming was eliminated during low nest humidity. In combination with other studies, these results show that female pythons sense environmental temperature and humidity and utilize this information at multiple time points (i.e., during gravidity [egg bearing], at oviposition [egg laying], and during egg brooding) to enhance the developmental environment of their offspring. This research demonstrates that maternal behaviors that are simple and subtle, yet easily quantifiable, can balance several critical developmental variables (i.e., thermoregulation, water balance, and respiration).
ContributorsStahlschmidt, Zachary R (Author) / DeNardo, Dale F (Thesis advisor) / Harrison, Jon (Committee member) / McGraw, Kevin (Committee member) / Rutowski, Ronald (Committee member) / Walsberg, Glenn (Committee member) / Arizona State University (Publisher)
Created2011