Matching Items (31)
Filtering by

Clear all filters

133907-Thumbnail Image.png
Description
As climate change and air pollution continue to plague the world today, committed citizens are doing their part to minimize their environmental impact. However, financial limitations have hindered a majority of individuals from adopting clean, renewable energy such as rooftop photovoltaic solar systems. England Sustainability Consulting plans to reverse this

As climate change and air pollution continue to plague the world today, committed citizens are doing their part to minimize their environmental impact. However, financial limitations have hindered a majority of individuals from adopting clean, renewable energy such as rooftop photovoltaic solar systems. England Sustainability Consulting plans to reverse this limitation and increase affordability for residents across Northern California to install solar panel systems for their energy needs. The purpose of this proposal is to showcase a new approach to procuring solar panel system components while offering the same products needed by each customer. We will examine market data to further prove the feasibility of this business approach while remaining profitable and spread our company's vision across all of Northern California.
ContributorsEngland, Kaysey (Author) / Dooley, Kevin (Thesis director) / Keahey, Jennifer (Committee member) / Department of Supply Chain Management (Contributor) / School of Social and Behavioral Sciences (Contributor) / W.P. Carey School of Business (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134184-Thumbnail Image.png
Description
Historically, Supreme Court interpretations of the Constitution of the United States have been significantly important, impacting the lives of every American. This honors thesis seeks to understand the ways in which the Constitution has been interpreted through the lens of political ideology. Using constitutional theory, I explain how the political

Historically, Supreme Court interpretations of the Constitution of the United States have been significantly important, impacting the lives of every American. This honors thesis seeks to understand the ways in which the Constitution has been interpreted through the lens of political ideology. Using constitutional theory, I explain how the political ideologies of classical liberalism, conservatism, libertarianism, and progressive liberalism have played a role in the interpretations of the First, Second, and Fourth Amendments. I also examine how these ideological interpretations have changed from 1776 to 2017, dividing the history of the United States into four eras: the Founding Era, the Civil War Era, the New Deal Era, and the Modern Era. First, the First Amendment's clauses on religion are examined, where I focus on the separation between church and state as well as the concepts of "establishment" and "free exercise." The First Amendment transitions from classically liberal, to conservative, to progressively liberal and classically liberal, to progressively liberal and libertarian. Next, we look at the Second Amendment's notions of a "militia" and the "right to keep and bear arms." The Second Amendment's interpretations begin classically liberal, then change to classically liberal and progressively liberal, to progressively liberal, to conservative. Finally, the analysis on the Fourth Amendment's "unreasonable searches and seizures" as well as "warrants" lends evidence to ideological interpretations. The Fourth Amendment, like the other two, starts classically liberal for two eras, then becomes libertarian, and finally ends libertarian and conservative. The implications of each of these conclusions are then discussed, with emphasis on public opinion in society during the era in question, the ways in which the ideologies in each era seem to build upon one another, the ideologies of the justices who wrote the opinions, and the ideology of the court.
Created2017-12
136537-Thumbnail Image.png
Description
The globalized food system has caused detriments to the environment, to economic justice, and to social and health rights within the food system. Due to an increasing concern over these problems, there has been a popular turn back to a localized food system. Localization's main principle is reconnecting the producer

The globalized food system has caused detriments to the environment, to economic justice, and to social and health rights within the food system. Due to an increasing concern over these problems, there has been a popular turn back to a localized food system. Localization's main principle is reconnecting the producer and consumer while advocating for healthy, local, environmentally friendly, and socially just food. I give utilitarian reasons within a Kantian ethical framework to argue that while partaking in a local food system may be morally good, we cannot advocate for localization as a moral obligation. It is true from empirical research that localizing food could solve many of the environmental, economic, social, and health problems that exist today due to the food system. However, many other countries depend upon the import/export system to keep their own poverty rates low and economies thriving. Utilitarian Peter Singer argues that it would be irresponsible to stop our business with those other countries because we would be causing more harm than good. There are reasons to support food localization, and reasons to reject food localization. Food localization is a moral good in respect to the many benefits that it has, yet it is not a moral obligation due to some of the detriments it may itself cause.
ContributorsGulinson, Chelsea Leah (Author) / McGregor, Joan (Thesis director) / Watson, Jeff (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Sandra Day O'Connor College of Law (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2015-05
136500-Thumbnail Image.png
Description
Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.
ContributorsSchrilla, John Paul (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136132-Thumbnail Image.png
Description
Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on

Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on sample exteriors, a 4 mm passivating boundary layer effect was observed, impeding the carbonation process at the center. XRD analysis was used to characterize the extent of carbonation, indicating extremely poor carbonation and therefore CO2 penetration inside the visible boundary. The depth of the passivating layer was found to be independent of both time and choice of aggregate. Less than adequate strength was developed in carbonated trials due to formation of small, weakly-connected crystals, shown with SEM analysis. Additional research, especially in situ analysis with thermogravimetric analysis would be useful to determine the causation of poor carbonation performance. This technology has great potential to substitute for certain Portland cement applications if these issues can be addressed.
ContributorsHermens, Stephen Edward (Author) / Bearat, Hamdallah (Thesis director) / Dai, Lenore (Committee member) / Mobasher, Barzin (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
132840-Thumbnail Image.png
Description
The United States is in a period of political turmoil and polarization. New technologies have matured over the last ten years, which have transformed an individual’s relationship with society and government. The emergence of these technologies has revolutionized access to both information and misinformation. Skills such as bias recognition and

The United States is in a period of political turmoil and polarization. New technologies have matured over the last ten years, which have transformed an individual’s relationship with society and government. The emergence of these technologies has revolutionized access to both information and misinformation. Skills such as bias recognition and critical thinking are more imperative than in any other time to separate truth from false or misleading information. Meanwhile, education has not evolved with these changes. The average individual is more likely to come to uninformed conclusions and less likely to listen to differing perspectives. Moreover, technology is further complicating and compounding other issues in the political process. All of this is manifesting in division among the American people who elect more polarized politicians who increasingly fail to find avenues for compromise.

In an effort to address these trends, we founded a student organization, The Political Literates, to fight political apathy by delivering political news in an easy to understand and unbiased manner. Inspired by our experience with this organization, we combine our insights with research to paint a new perspective on the state of the American political system.

This thesis analyzes various issues identified through our observations and research, with a heavy emphasis on using examples from the 2016 election. Our focus is how new technologies like data analytics, the Internet, smartphones, and social media are changing politics by driving political and social transformation. We identify and analyze five core issues that have been amplified by new technology, hindering the effectiveness of elections and further increasing political polarization:

● Gerrymandering which skews partisan debate by forcing politicians to pander to ideologically skewed districts.
● Consolidation of media companies which affects the diversity of how news is shared.
● Repeal of the Fairness Doctrine which allowed media to become more partisan.
● The Citizens United Ruling which skews power away from average voters in elections.
● A Failing Education System which does not prepare Americans to be civically engaged and to avoid being swayed by biased or untrue media.

Based on our experiment with the Political Literates and our research, we call for improving how critical thinking and civics is taught in the American education system. Critical thought and civics must be developed pervasively. With this, more people would be able to form more sophisticated views by listening to others to learn rather than win, listening less to irrelevant information, and forming a culture with more engagement in politics. Through this re-enlightenment, many of America’s other problems may evaporate or become more actionable.
ContributorsStenseth, Kyle (Co-author) / Tumas, Trevor (Co-author) / Mokwa, Michael (Thesis director) / Eaton, John (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133726-Thumbnail Image.png
Description
Although the Leadership Scholarship Program has seen successful recruiting processes throughout changes in leadership of the program; the organization expressed a need for major overhaul to reevaluate the decisions of the process and to establish backing for those decisions. By asking current and alumni members of the program about what

Although the Leadership Scholarship Program has seen successful recruiting processes throughout changes in leadership of the program; the organization expressed a need for major overhaul to reevaluate the decisions of the process and to establish backing for those decisions. By asking current and alumni members of the program about what they would like to see in a future member of the program as well as which parts of the process they found most important, the qualities of a future member of the program could be established and weighted. The goals of the reevaluation were to help eliminate bias, discrepancies between applications with extremely different uncontrollable factors, define points of discrepancies, and establish organizational sustainability while achieving a 100% acceptance rate from offered students. Each of these goals was achieved through methods outlined in the LSP Selection Process Manual that was written as a result of this reevaluation. The manual also outlines ways to improve the process going forward.
ContributorsCassidy, Delilah R. (Author) / Kappes, Janelle (Thesis director) / Klinkner, Lara (Committee member) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Department of Marketing (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
134704-Thumbnail Image.png
Description
p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult and costly. This research aims to produce p-coumarate directly from renewable and sustainable glucose using a co-culture of Yeast and E. Coli. Methods used in this study include: designing optimal media for mixed-species microbial growth, genetically engineering both strains to build the production pathway with maximum yield, and analyzing the presence of p-Coumarate and its pathway intermediates using High Performance Liquid Chromatography (HPLC). To date, the results of this project include successful integration of C4H activity into the yeast strain BY4741 ∆FDC1, yielding a strain that completely consumed trans-cinnamate (initial concentration of 50 mg/L) and produced ~56 mg/L p-coumarate, a resting cell assay of the co-culture that produced 0.23 mM p-coumarate from an initial L-Phenylalanine concentration of 1.14 mM, and toxicity tests that confirmed the toxicity of trans-cinnamate to yeast for concentrations above ~50 mg/L. The hope for this project is to create a feasible method for producing p-Coumarate sustainably.
ContributorsJohnson, Kaleigh Lynnae (Author) / Nielsen, David (Thesis director) / Thompson, Brian (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133324-Thumbnail Image.png
Description
In the pursuit of sustainable sources of energy that do less harm to the environment, numerous technologies have been developed to reduce carbon emissions in the atmosphere. The implementation of carbon capture and storage systems (CCS) has played a crucial role in reducing CO2 emissions, but depleting storage reserves and

In the pursuit of sustainable sources of energy that do less harm to the environment, numerous technologies have been developed to reduce carbon emissions in the atmosphere. The implementation of carbon capture and storage systems (CCS) has played a crucial role in reducing CO2 emissions, but depleting storage reserves and ever-increasing costs of sequestrating captured CO2 has prompted the idea of utilizing CO2 as soon as it is produced (i.e. carbon capture and utilization, or CCU) and storing any remaining amounts. This project analyzes the cost of implementing a delafossite CuFeO2 backed CCU system for the average US coal-burning power plant with respect to current amounts of CO2 captured. Beyond comparing annual maintenance costs of CCU and CCS systems, the project extends previous work done on direct CO2 conversion to liquid hydrocarbons by providing a protocol for determining how the presence of NO affects the products formed during pure CO2 hydrogenation. Overall, the goal is to gauge the applicability of CCU systems to power plants with a sub 10-year lifespan left, whilst observing the potential revenue that can be potentially generated from CCU implementation. Under current energy costs ($0.12 per kWh), a delafossite CuFeO2 supported CCU system would generate over $729 thousand in profit for an average sized supercritical pulverized coal power (SCPC) plants selling diesel fuel created from CO2 hydrogenation. This amount far exceeds the cost of storing captured CO2 and suggests that CCU systems can be profitable for SCPC power plants that intend to burn coal until 2025.
ContributorsShongwe, Thembelihle Wakhile (Author) / Andino, Jean (Thesis director) / Otsengue, Thonya (Committee member) / Economics Program in CLAS (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05