Matching Items (838)
Filtering by

Clear all filters

149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
149992-Thumbnail Image.png
Description
Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness,

Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness, efficient methodology is required that considers effect of variations in the design flow. Analyzing timing variability of complex circuits with HSPICE simulations is very time consuming. This thesis proposes an analytical model to predict variability in CMOS circuits that is quick and accurate. There are several analytical models to estimate nominal delay performance but very little work has been done to accurately model delay variability. The proposed model is comprehensive and estimates nominal delay and variability as a function of transistor width, load capacitance and transition time. First, models are developed for library gates and the accuracy of the models is verified with HSPICE simulations for 45nm and 32nm technology nodes. The difference between predicted and simulated σ/μ for the library gates is less than 1%. Next, the accuracy of the model for nominal delay is verified for larger circuits including ISCAS'85 benchmark circuits. The model predicted results are within 4% error of HSPICE simulated results and take a small fraction of the time, for 45nm technology. Delay variability is analyzed for various paths and it is observed that non-critical paths can become critical because of Vth variation. Variability on shortest paths show that rate of hold violations increase enormously with increasing Vth variation.
ContributorsGummalla, Samatha (Author) / Chakrabarti, Chaitali (Thesis advisor) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
149997-Thumbnail Image.png
Description
This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower

This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower emissions. This distribution locational marginal price (D-LMP) determines the cost of electricity at each node in the electrical network. The D-LMP is comprised of the cost of energy, cost of losses, and a renewable energy premium. The renewable premium is an adjustable function to compensate `green' distributed generation. A D-LMP is derived and formulated from the PJM model, as well as several alternative formulations. The logistics and infrastructure an implementation is briefly discussed. This study also takes advantage of the D-LMP real-time pricing to implement distributed storage technology. A storage schedule optimization is developed using linear programming. Day-ahead LMPs and historical load data are used to determine a predictive optimization. A test bed is created to represent a practical electric distribution system. Historical load, solar, and LMP data are used in the test bed to create a realistic environment. A power flow and tabulation of the D-LMPs was conducted for twelve test cases. The test cases included various penetrations of solar photovoltaics (PV), system networking, and the inclusion of storage technology. Tables of the D-LMPs and network voltages are presented in this work. The final costs are summed and the basic economics are examined. The use of a D-LMP can lower costs across a system when advanced technologies are used. Storage improves system costs, decreases losses, improves system load factor, and bolsters voltage. Solar energy provides many of these same attributes at lower penetrations, but high penetrations have a detrimental effect on the system. System networking also increases these positive effects. The D-LMP has a positive impact on residential customer cost, while greatly increasing the costs for the industrial sector. The D-LMP appears to have many positive impacts on the distribution system but proper cost allocation needs further development.
ContributorsKiefer, Brian Daniel (Author) / Heydt, Gerald T (Thesis advisor) / Shunk, Dan (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011
150048-Thumbnail Image.png
Description
A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene,

A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene, and xylenes (BTEX) via a homemade molecular imprinted polymer, and a specific detection and control circuit. The device is a wireless, portable, battery-powered, and cell-phone operated device. The device has been calibrated and validated in the laboratory and using selected ion flow tube mass spectrometry (SFIT-MS). The capability and robustness are also demonstrated in some field tests. It provides rapid and reliable detection of BTEX in real samples, including challenging high concentrations of interferents, and it is suitable for occupational, environmental health and epidemiological applications.
ContributorsChen, Zheng (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
149681-Thumbnail Image.png
Description
The trend towards using recycled materials on new construction projects is growing as the cost for construction materials are ever increasing and the awareness of the responsibility we have to be good stewards of our environment is heightened. While recycled asphalt is sometimes used in pavements, its use as structural

The trend towards using recycled materials on new construction projects is growing as the cost for construction materials are ever increasing and the awareness of the responsibility we have to be good stewards of our environment is heightened. While recycled asphalt is sometimes used in pavements, its use as structural fill has been hindered by concern that it is susceptible to large long-term deformations (creep), preventing its use for a great many geotechnical applications. While asphalt/soil blends are often proposed as an alternative to 100% recycled asphalt fill, little data is available characterizing the geotechnical properties of recycled asphalt soil blends. In this dissertation, the geotechnical properties for five different recycled asphalt soil blends are characterized. Data includes the particle size distribution, plasticity index, creep, and shear strength for each blend. Blends with 0%, 25%, 50%, 75% and 100% recycled asphalt were tested. As the recycled asphalt material used for testing had particles sizes up to 1.5 inches, a large 18 inch diameter direct shear apparatus was used to determine the shear strength and creep characteristics of the material. The results of the testing program confirm that the creep potential of recycled asphalt is a geotechnical concern when the material is subjected to loads greater than 1500 pounds per square foot (psf). In addition, the test results demonstrate that the amount of soil blended with the recycled asphalt can greatly influence the creep and shear strength behavior of the composite material. Furthermore, there appears to be an optimal blend ratio where the composite material had better properties than either the recycled asphalt or virgin soil alone with respect to shear strength.
ContributorsSchaper, Jeffery M (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra L. (Committee member) / Zapata, Claudia E (Committee member) / Arizona State University (Publisher)
Created2011
149684-Thumbnail Image.png
Description
This thesis explores concept of "global bioethics" in both its development as well as its current state in an effort to understand exactly where it fits into the larger field of bioethics. Further, the analysis poses specific questions regarding what it may contribute to this field and related fields, and

This thesis explores concept of "global bioethics" in both its development as well as its current state in an effort to understand exactly where it fits into the larger field of bioethics. Further, the analysis poses specific questions regarding what it may contribute to this field and related fields, and the possibility and scope associated with the continued development of global bioethics as its own discipline. To achieve this, the piece addresses questions regarding current opinions on the subject, the authorities and their associated publications related to global bioethics, and what the aims of the subject should be given its current state. "Global Bioethics" is a term that, while seen frequently in bioethics literature, is difficult to define succinctly. While many opinions are provided on the concept, little consensus exists regarding its application and possible contributions and, in some cases, even its very possibility. Applying ethical principles of health and medicine globally is undoubtedly complicated by the cultural, social, and geographical considerations associated with understanding health and medicine in different populations, leading to a dichotomy between two schools of thought in relation to global bioethics. These two sides consist of those who think that universality of bioethics is possible whereas the opposing viewpoint holds that relativism is the key to applying ethics on a global scale. Despite the aforementioned dichotomy in addressing applications of global bioethics, this analysis shows that the goals of the subject should be more focused on contributing to ethical frameworks and valuable types of thinking related to the ethics health and medicine on a global scale. This is achieved through an exploration of bioethics in general, health as a function of society and culture, the history and development of global bioethics itself, and an exploration of pertinent global health topics. While primarily descriptive in nature, this analysis critiques some of the current discussions and purported goals surrounding global bioethics, recommending that the field focus on fostering valuable discussion and framing of issues rather than the pursuit of concrete judgments on moral issues in global health and medicine.
ContributorsRuffenach, Stephen Charles (Author) / Robert, Jason S (Thesis advisor) / Maienschein, Jane (Committee member) / Hruschka, Daniel J (Committee member) / Arizona State University (Publisher)
Created2011
149725-Thumbnail Image.png
Description
Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study

Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study in order to prevent HCV from harming people's health. The envelope protein 2 (E2) of HCV is thought to be a promising vaccine candidate because it can directly bind to a human cell receptor and plays a role in viral entry. However, the E2 protein production in cells is inefficient due to its complicated matured structure. Folding of E2 in the endoplasmic reticulum (ER) is often error-prone, resulting in production of aggregates and misfolded proteins. These incorrect forms of E2 are not functional because they are not able to bind to human cells and stimulate antibody response to inhibit this binding. This study is aimed to overcome the difficulties of HCV E2 production in plant system. Protein folding in the ER requires great assistance from molecular chaperones. Thus, in this study, two molecular chaperones in the ER, calreticulin and calnexin, were transiently overexpressed in plant leaves in order to facilitate E2 folding and production. Both of them showed benefits in increasing the yield of E2 and improving the quality of E2. In addition, poorly folded E2 accumulated in the ER may cause stress in the ER and trigger transcriptional activation of ER molecular chaperones. Therefore, a transcription factor involved in this pathway, named bZIP60, was also overexpressed in plant leaves, aiming at up-regulating a major family of molecular chaperones called BiP to assist protein folding. However, our results showed that BiP mRNA levels were not up-regulated by bZIP60, but they increased in response to E2 expression. The Western blot analysis also showed that overexpression of bZIP60 had a small effect on promoting E2 folding. Overall, this study suggested that increasing the level of specific ER molecular chaperones was an effective way to promote HCV E2 protein production and maturation.
ContributorsHong, Fan (Author) / Mason, Hugh (Thesis advisor) / Gaxiola, Roberto (Committee member) / Chang, Yung (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2011
149770-Thumbnail Image.png
Description
Restaurants have a cumulative impact on the environment, economy, and society. The majority of restaurants are small-to-medium enterprises (SMEs). Review of sustainability and industry literature revealed that considering restaurants as businesses with sustainable development options is the most appropriate way to evaluate their sustainable practices or lack thereof. Sustainable development

Restaurants have a cumulative impact on the environment, economy, and society. The majority of restaurants are small-to-medium enterprises (SMEs). Review of sustainability and industry literature revealed that considering restaurants as businesses with sustainable development options is the most appropriate way to evaluate their sustainable practices or lack thereof. Sustainable development is the means by which a company progresses towards achieving an identified set of sustainability goals and harnesses competitive advantage. The purpose of this thesis is to identify barriers to implementing sustainable practices in restaurants, and explore ways that restaurateurs can incorporate sustainable business practices. Energy consumption, water use, waste production, and food throughput are the four sustainability indicators addressed in this thesis. Interviews were conducted with five Tempe, Arizona restaurants, two of which consider their operations to be sustainable, and three of which are traditional restaurants. Results show that for traditional restaurants, the primary barriers to implementing sustainable business practices are cost, lack of awareness, and space. For sustainability-marketed restaurants, the barriers included a lack of knowledge or legal concerns. The sustainability-marketed restaurants have energy-efficient equipment and locally source a majority of their food purchases. There is a marked difference between the two types of restaurants in perception of barriers to sustainable business practices. I created a matrix to identify whether each indicator metric was applicable and present at a particular restaurant, and the potential barriers to implementing sustainable practices in each of the four indicator areas. Restaurants can use the assessment matrix to compare their current practices with sustainable practices and find ways to implement new or enhance existing sustainable practices. Identifying the barriers from within restaurants increases our understanding of the reasons why sustainable practices are not automatically adopted by SMEs. The assessment matrix can help restaurants overcome barriers to achieving sustainability by highlighting how to incorporate sustainable business practices.
ContributorsFreeman, Emily McConnell (Author) / Eakin, Hallie (Thesis advisor) / Basile, George (Thesis advisor) / Williams, Eric D. (Committee member) / Arizona State University (Publisher)
Created2011
149780-Thumbnail Image.png
Description
The demand for handheld portable computing in education, business and research has resulted in advanced mobile devices with powerful processors and large multi-touch screens. Such devices are capable of handling tasks of moderate computational complexity such as word processing, complex Internet transactions, and even human motion analysis. Apple's iOS devices,

The demand for handheld portable computing in education, business and research has resulted in advanced mobile devices with powerful processors and large multi-touch screens. Such devices are capable of handling tasks of moderate computational complexity such as word processing, complex Internet transactions, and even human motion analysis. Apple's iOS devices, including the iPhone, iPod touch and the latest in the family - the iPad, are among the well-known and widely used mobile devices today. Their advanced multi-touch interface and improved processing power can be exploited for engineering and STEM demonstrations. Moreover, these devices have become a part of everyday student life. Hence, the design of exciting mobile applications and software represents a great opportunity to build student interest and enthusiasm in science and engineering. This thesis presents the design and implementation of a portable interactive signal processing simulation software on the iOS platform. The iOS-based object-oriented application is called i-JDSP and is based on the award winning Java-DSP concept. It is implemented in Objective-C and C as a native Cocoa Touch application that can be run on any iOS device. i-JDSP offers basic signal processing simulation functions such as Fast Fourier Transform, filtering, spectral analysis on a compact and convenient graphical user interface and provides a very compelling multi-touch programming experience. Built-in modules also demonstrate concepts such as the Pole-Zero Placement. i-JDSP also incorporates sound capture and playback options that can be used in near real-time analysis of speech and audio signals. All simulations can be visually established by forming interactive block diagrams through multi-touch and drag-and-drop. Computations are performed on the mobile device when necessary, making the block diagram execution fast. Furthermore, the extensive support for user interactivity provides scope for improved learning. The results of i-JDSP assessment among senior undergraduate and first year graduate students revealed that the software created a significant positive impact and increased the students' interest and motivation and in understanding basic DSP concepts.
ContributorsLiu, Jinru (Author) / Spanias, Andreas (Thesis advisor) / Tsakalis, Kostas (Committee member) / Qian, Gang (Committee member) / Arizona State University (Publisher)
Created2011
149645-Thumbnail Image.png
Description
Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen

Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen oxidation reaction (HOR) at anode side and oxygen reduction reaction (ORR) at cathode side. Synthesis of Pt nanoparticles supported on multi walled carbon nanotubes (MWCNTs) possess a highly durable electrochemical surface area (ESA) and show good power output on proton exchange membrane (PEM) fuel cell performance. Platinum on multi-walled carbon nanotubes (MWCNTs) support were synthesized by two different processes to transfer PtCl62- from aqueous to organic phase. While the first method of Pt/MWCNTs synthesis involved dodecane thiol (DDT) and octadecane thiol (ODT) as anchoring agent, the second method used ammonium lauryl sulfate (ALS) as the dispersion/anchoring agent. The particle size and distribution of platinum were examined by high-resolution transmission electron microscope (HRTEM). The TEM images showed homogenous distribution and uniform particle size of platinum deposited on the surface of MWCNTs. The single cell fuel cell performance of the Pt/MWCNTs synthesized thiols and ALS based electrode containing 0.2 (anode) and 0.4 mg (cathode) Pt.cm-2 were evaluated using Nafion-212 electrolyte with H2 and O2 gases at 80 oC and ambient pressure. The catalyst synthesis with ALS is relatively simple compared to that with thiols and also showed higher performance (power density reaches about 1070 mW.cm-2). The Electrodes with Pt/MWCNTs nanocatalysts synthesized using ALS were characterized by cyclic voltammetry (CV) for durability evaluation using humidified H2 and N2 gases at room temperature (21 oC) along with commercial Pt/C for comparison. The ESA measured by cyclic voltammetry between 0.15 and 1.2 V showed significant less degradation after 1000 cycles for ALS based Pt/MWCNTs.
ContributorsLiu, Xuan (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Munukutla, Lakshmi (Committee member) / Tamizhmani, Govindasamy (Committee member) / Arizona State University (Publisher)
Created2011