Matching Items (59)
Filtering by

Clear all filters

Description

This thesis explores the potential for software to act as an educational experience for engineers who are learning system dynamics and controls. The specific focus is a spring-mass-damper system. First, a brief introduction of the spring-mass-damper system is given, followed by a review of the background and prior work concerning

This thesis explores the potential for software to act as an educational experience for engineers who are learning system dynamics and controls. The specific focus is a spring-mass-damper system. First, a brief introduction of the spring-mass-damper system is given, followed by a review of the background and prior work concerning this topic. Then, the methodology and main approaches of the system are explained, as well as a more technical overview of the program. Lastly, a conclusion and discussion of potential future work is covered. The project was found to be useful by several engineers who tested it. While there is still plenty of functionality to add, it is a promising first attempt at teaching engineers through software development.

ContributorsRobbins, Alexander Kalani (Author) / Kobayashi, Yoshihiro (Thesis director) / Benson, David (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring

This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring different aspects of business, with the end goal of gaining traction. The product we were given to work through this process with was Hot Head, an engineering capstone project concept. The Hot Head product is a sustainable and innovative solution to the water waste issue we find is very prominent in the United States. In order to bring the Hot Head idea to life, we were tasked with doing research on topics ranging from the Hot Head life cycle to finding plausible personas who may have an interest in the Hot Head product. This paper outlines the journey to gaining traction via a marketing campaign and exposure of our brand on several platforms, with a specific interest in website traffic. Our research scope comes from mainly primary sources like gathering opinions of potential buyers by sending out surveys and hosting focus groups. The paper concludes with some possible future steps that could be taken if this project were to be continued.

ContributorsRote, Jennifer Ashley (Co-author) / Goodall, Melody (Co-author) / Lozano Porras, Mariela (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137210-Thumbnail Image.png
Description
The exhaust system is an integral part of any internal combustion engine. A well- designed exhaust system efficiently removes exhaust gasses expelled from the cylinders. If tuned for performance purposes, the exhaust system can also exhibit scavenging and supercharging characteristics. This project reviews the major components of an exhaust system

The exhaust system is an integral part of any internal combustion engine. A well- designed exhaust system efficiently removes exhaust gasses expelled from the cylinders. If tuned for performance purposes, the exhaust system can also exhibit scavenging and supercharging characteristics. This project reviews the major components of an exhaust system and discusses the proper design techniques necessary to utilize the performance boosting potential of a tuned exhaust system for a four-stroke engine. These design considerations are then applied to Arizona State University's Formula SAE vehicle by comparing the existing system to a properly tuned system. An inexpensive testing method, developed specifically for this project, is used to test the effectiveness of the current design. The results of the test determined that the current design is ineffective at scavenging neighboring pipes of exhaust gasses and should be redesigned for better performance.
ContributorsKnutsen, Jeffrey Scott (Author) / Huang, Huei-Ping (Thesis director) / Steele, Bruce (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136181-Thumbnail Image.png
Description
A robotic exploration mission that would enter a lunar pit to characterize the environment is described. A hopping mechanism for the robot's mobility is proposed. Various methods of hopping drawn from research literature are discussed in detail. The feasibilities of mechanical, electric, fluid, and combustive methods are analyzed. Computer simulations

A robotic exploration mission that would enter a lunar pit to characterize the environment is described. A hopping mechanism for the robot's mobility is proposed. Various methods of hopping drawn from research literature are discussed in detail. The feasibilities of mechanical, electric, fluid, and combustive methods are analyzed. Computer simulations show the mitigation of the risk of complex autonomous navigation systems. A mechanical hopping mechanism is designed to hop in Earth gravity and carry a payload half its mass. A physical experiment is completed and proves a need for further refinement of the prototype design. Future work is suggested to continue exploring hopping as a mobility method for the lunar robot.
ContributorsMcKinney, Tyler James (Author) / Thangavelautham, Jekan (Thesis director) / Robinson, Mark (Committee member) / Asphaug, Erik (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136204-Thumbnail Image.png
Description
This thesis investigates the viability of a solar still for desalination of a personal water supply. The end goal of the project is to create a design that meets the output requirement while tailoring the components to focus on low cost so it would be feasible in the impoverished areas

This thesis investigates the viability of a solar still for desalination of a personal water supply. The end goal of the project is to create a design that meets the output requirement while tailoring the components to focus on low cost so it would be feasible in the impoverished areas of the world. The primary requirement is an output of 3 liters of potable water per day, the minimum necessary for an adult human. The study examines the effect of several design parameters, such as the basin material, basin thickness, starting water depth, basin dimensions, cover material, cover angle, and cover thickness. A model for the performance of a solar still was created in MATLAB to simulate the system's behavior and sensitivity to these parameters. An instrumented prototype solar still demonstrated viability of the concept and provided data for validation of the MATLAB model.
ContributorsRasmussen, Dylan James (Author) / Wells, Valana (Thesis director) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136909-Thumbnail Image.png
Description
The following document addresses two grand challenges posed to engineers: to make solar energy economically viable and to restore and improve urban infrastructure. Design solutions to these problems consist of the preliminary designs of two energy systems: a Packaged Photovoltaic (PPV) energy system and a natural gas based Modular Micro

The following document addresses two grand challenges posed to engineers: to make solar energy economically viable and to restore and improve urban infrastructure. Design solutions to these problems consist of the preliminary designs of two energy systems: a Packaged Photovoltaic (PPV) energy system and a natural gas based Modular Micro Combined Cycle (MMCC) with 3D renderings. Defining requirements and problem-solving approach methodology for generating complex design solutions required iterative design and a thorough understanding of industry practices and market trends. This paper briefly discusses design specifics; however, the major emphasis is on aspects pertaining to economical manufacture, deployment, and subsequent suitability to address the aforementioned challenges. The selection of these systems is based on the steady reduction of PV installation costs in recent years (average among utility, commercial, and residential down 27% from Q4 2012 to Q4 2013) and the dramatic decline in natural gas prices to $5.61 per thousand cubic feet. In addition, a large number of utility scale coal-based power plants will be retired in 2014, many due to progressive emission criteria, creating a demand for additional power systems to offset the capacity loss and to increase generating capacity in order to facilitate the ever-expanding world population. The proposed energy systems are not designed to provide power to the masses through a central location. Rather, they are intended to provide economical, reliable, and high quality power to remote locations and decentralized power to community-based grids. These energy systems are designed as a means of transforming and supporting the current infrastructure through distributed electricity generation.
ContributorsSandoval, Benjamin Mark (Author) / Bryan, Harvey (Thesis director) / Fonseca, Ernesto (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136830-Thumbnail Image.png
DescriptionThe heat island effect has resulted in an observational increase in averave ambient as well as surface temperatures and current photovoltaic implementation do not migitate this effect. Thus, the feasibility and performance of alternative solutions are explored and determined using theoretical, computational data.
ContributorsCoyle, Aidan John (Author) / Trimble, Steven (Thesis director) / Underwood, Shane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137142-Thumbnail Image.png
Description
This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion systems. Utilizing the low pressure, high velocity flow in the

This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion systems. Utilizing the low pressure, high velocity flow in the plume, this secondary structure entrains a secondary mass flow to increase the mass flow of the propulsion system. Rocket engine nozzle ejectors must be designed with the high supersonic conditions associated with rocket engines. These designs rely on the numerical process described in this paper.
ContributorsGibson, Gaines Sullivan (Author) / Wells, Valana (Thesis director) / Takahashi, Timothy (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136994-Thumbnail Image.png
Description
The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a

The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a 1 m/s flow velocity in a 30cm x 30cm test section for 300 seconds. Secondary parameters, such as system height, tank height, area contraction ratio, and roof loading limits, may change depending on preference, location, or environment. The final chosen configuration is a gravity fed design with six major components: the reservoir tank, the initial duct, the contraction nozzle, the test section, the exit duct, and the variable control exit nozzle. Important sizing results include a minimum water weight of 60,000 pounds, a system height of 7.65 meters, a system length of 6 meters (not including the reservoir tank), a large shallow reservoir tank width of 12.2 meters, and height of 0.22 meters, and a control nozzle exit radius range of 5.25 cm to 5.3 cm. Computational fluid dynamic simulation further supports adherence to the design constraints but points out some potential areas for improvement in dealing with flow irregularities. These areas include the bends in the ducts, and the contraction nozzle. Despite those areas recommended for improvement, it is reasonable to conclude that the design and process fulfill the project goals.
ContributorsZykan, Brandt Davis Healy (Author) / Wells, Valana (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05