Matching Items (1,117)
Filtering by

Clear all filters

150365-Thumbnail Image.png
Description

A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture,

A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture, and the second section used a chemical-based WMA admixture. The rest of the project included control hot mix asphalt (HMA) mixture. The evaluation included testing of field-core specimens and laboratory compacted specimens. The laboratory specimens were compacted at two different temperatures; 270 °F (132 °C) and 310 °F (154 °C). The experimental plan included four laboratory tests: the dynamic modulus (E*), indirect tensile strength (IDT), moisture damage evaluation using AASHTO T-283 test, and the Hamburg Wheel-track Test. The dynamic modulus E* results of the field cores at 70 °F showed similar E* values for control HMA and foaming-based WMA mixtures; the E* values of the chemical-based WMA mixture were relatively higher. IDT test results of the field cores had comparable finding as the E* results. For the laboratory compacted specimens, both E* and IDT results indicated that decreasing the compaction temperatures from 310 °F to 270 °F did not have any negative effect on the material strength for both WMA mixtures; while the control HMA strength was affected to some extent. It was noticed that E* and IDT results of the chemical-based WMA field cores were high; however, the laboratory compacted specimens results didn't show the same tendency. The moisture sensitivity findings from TSR test disagreed with those of Hamburg test; while TSR results indicated relatively low values of about 60% for all three mixtures, Hamburg test results were quite excellent. In general, the results of this study indicated that both WMA mixes can be best evaluated through field compacted mixes/cores; the results of the laboratory compacted specimens were helpful to a certain extent. The dynamic moduli for the field-core specimens were higher than for those compacted in the laboratory. The moisture damage findings indicated that more investigations are needed to evaluate moisture damage susceptibility in field.

ContributorsAlossta, Abdulaziz (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew W. (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2011
149861-Thumbnail Image.png
Description
Community Supported Agriculture programs (CSAs) have become a viable local source of fresh agricultural goods and represent a potentially new way to improve fruit and vegetable consumption among individuals and families. Studies concerning CSAs have focused mainly on characteristics of the typical CSA member and motivations and barriers to join

Community Supported Agriculture programs (CSAs) have become a viable local source of fresh agricultural goods and represent a potentially new way to improve fruit and vegetable consumption among individuals and families. Studies concerning CSAs have focused mainly on characteristics of the typical CSA member and motivations and barriers to join a CSA program. The purpose of this study was to examine whether behavior and attitudinal differences existed between current CSA members and a nonmember control group. Specifically, ecological attitudes, eating out behaviors, composting frequency, and family participation in food preparation were assessed. This study utilized an online survey comprising items from previous survey research as well as newly created items. A total of 115 CSA member and 233 control survey responses were collected. CSA members were more likely to be older, have more education, and have a higher income than the control group. The majority of CSA members surveyed were female, identified as non-Hispanic and Caucasian, earned a higher income, and reported being the primary food shopper and preparer. The majority of members also noted that the amount and variety of fruits and vegetables they ate and served their family increased as a result of joining a CSA. CSA members were more ecologically minded compared to the control group. Frequency of eating out was not significantly different between groups. However, eating out behaviors were different between income categories. CSA members spent significantly more money at each meal eaten away from home and spent significantly more money on eating out each week. In both cases, controlling for income attenuated differences between groups. CSA members composted at a significantly higher rate and took part in other eco-friendly behaviors more often than the control group. Finally, no significant difference was evident between the two groups when analyzing family involvement in food preparation and meal decision-making. Overall, some significant attitudinal and behavioral differences existed between CSA members and non-CSA members. Further research is necessary to examine other distinctions between the two groups and whether these differences occur as a result of CSA membership.
ContributorsMacMillan Uribe, Alexandra L (Author) / Wharton, Christopher (Christopher Mack), 1977- (Thesis advisor) / Winham, Donna (Committee member) / Eakin, Hallie (Committee member) / Arizona State University (Publisher)
Created2011
149867-Thumbnail Image.png
Description
Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding

Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to its equivalent time/frequency representation. This avoids the repeated application of auditory model stages to test different candidate time/frequency vectors in minimizing perceptual objective functions. In this dissertation, a constrained mapping scheme is developed by linearizing certain auditory model stages that ensures obtaining a time/frequency mapping corresponding to the estimated auditory representation. This paradigm was successfully incorporated in a perceptual speech enhancement algorithm and a sinusoidal component selection task.
ContributorsKrishnamoorthi, Harish (Author) / Spanias, Andreas (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2011
149869-Thumbnail Image.png
Description
Fish farming is a fast growing industry, which, although necessary to feed an ever growing worldwide population, has its share of negative environmental consequences, including the release of drugs and other waste into the ocean, the use of fish caught from the ocean to feed farm raised fish, and the

Fish farming is a fast growing industry, which, although necessary to feed an ever growing worldwide population, has its share of negative environmental consequences, including the release of drugs and other waste into the ocean, the use of fish caught from the ocean to feed farm raised fish, and the escape of farm raised fish into natural bodies of water. However, the raising of certain types of fish, such as tilapia, seems to be an environmentally better proposition than raising other types of fish, such as salmon. This paper will explore the problems associated with fish farming, as well as offer a model, based on the literature, and interviews with fish farmers, to make small-scale fish farming both more environmentally, and more economically, sustainable. This paper culminates with a model for small-scale, specifically semi-subsistence, fish farmers. This model emphasizes education of the fish farmers, as well as educators learning from the fish farmers they interact with. The goal of this model is to help these fish farmers become both more environmentally and economically sustainable.
ContributorsLongoni, Robert A (Author) / Parmentier, Mary Jane (Thesis advisor) / Grossman, Gary (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
149930-Thumbnail Image.png
Description
Concern regarding the quality of traffic data exists among engineers and planners tasked with obtaining and using the data for various transportation applications. While data quality issues are often understood by analysts doing the hands on work, rarely are the quality characteristics of the data effectively communicated beyond the analyst.

Concern regarding the quality of traffic data exists among engineers and planners tasked with obtaining and using the data for various transportation applications. While data quality issues are often understood by analysts doing the hands on work, rarely are the quality characteristics of the data effectively communicated beyond the analyst. This research is an exercise in measuring and reporting data quality. The assessment was conducted to support the performance measurement program at the Maricopa Association of Governments in Phoenix, Arizona, and investigates the traffic data from 228 continuous monitoring freeway sensors in the metropolitan region. Results of the assessment provide an example of describing the quality of the traffic data with each of six data quality measures suggested in the literature, which are accuracy, completeness, validity, timeliness, coverage and accessibility. An important contribution is made in the use of data quality visualization tools. These visualization tools are used in evaluating the validity of the traffic data beyond pass/fail criteria commonly used. More significantly, they serve to educate an intuitive sense or understanding of the underlying characteristics of the data considered valid. Recommendations from the experience gained in this assessment include that data quality visualization tools be developed and used in the processing and quality control of traffic data, and that these visualization tools, along with other information on the quality control effort, be stored as metadata with the processed data.
ContributorsSamuelson, Jothan P (Author) / Pendyala, Ram M. (Thesis advisor) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2011
149918-Thumbnail Image.png
Description
At first glance, trends in increased hunger and obesity in the United States (US) would seem to represent the result of different causal mechanisms. The United States Department of Agriculture (USDA) reported that nearly 50 million Americans had experienced hunger in 2009. A year later, the Centers for

At first glance, trends in increased hunger and obesity in the United States (US) would seem to represent the result of different causal mechanisms. The United States Department of Agriculture (USDA) reported that nearly 50 million Americans had experienced hunger in 2009. A year later, the Centers for Disease Control and Prevention published a report showing that 68% of the US population was either overweight or obese. Researchers have found that these contrasting trends are actually interrelated. Being so, it is imperative that communities and individuals experiencing problems with food security are provided better access to healthy food options. In response to the need to increase healthy food access, many farmers markets in the US have received funding from the USDA to accept vouchers from federal food security programs, such as the Supplemental Nutrition Assistance Program (SNAP). In Downtown Phoenix, Arizona, one organization accepting vouchers from several programs is the Phoenix Public Market. However, the mere existence of these programs is not enough to establish food security within a community: characteristics of the population and food environments must also be considered. To examine issues of food security and public health, this thesis utilizes geographical information systems (GIS) technology as a tool to analyze specific environments in order to inform program effectiveness and future funding opportunities. Utilizing methods from community-based participatory research (CBPR) and GIS, a mapping project was conducted in partnership with the Market to answer three questions: (1) what is the demographic makeup of the surrounding community? (2) What retailers around the Market also accept food security vouchers? And (3) where are food security offices (SNAP and WIC) located within the area? Both in terms of demographic characteristics and the surrounding food environment, the project results illustrate that the Market is embedded within a population of need, and an area where it could greatly influence community food security.
ContributorsRawson, Brooke (Author) / Vargas, Perla A (Thesis advisor) / Booze, Randy (Committee member) / Vaughan, Suzanne (Committee member) / Arizona State University (Publisher)
Created2011
149919-Thumbnail Image.png
Description
The infrastructure is built in Unsaturated Soils. However, the geotechnical practitioners insist in designing the structures based on Saturated Soil Mechanics. The design of structures based on unsaturated soil mechanics is desirable because it reduces cost and it is by far a more sustainable approach. The research community has identified

The infrastructure is built in Unsaturated Soils. However, the geotechnical practitioners insist in designing the structures based on Saturated Soil Mechanics. The design of structures based on unsaturated soil mechanics is desirable because it reduces cost and it is by far a more sustainable approach. The research community has identified the Soil-Water Characteristic Curve as the most important soil property when dealing with unsaturated conditions. This soil property is unpopular among practitioners because the laboratory testing takes an appreciable amount of time. Several authors have attempted predicting the Soil-Water Characteristic Curve; however, most of the published predictions are based on a very limited soil database. The National Resources Conservation Service has a vast database of engineering soil properties with more than 36,000 soils, which includes water content measurements at different levels of suctions. This database was used in this study to validate two existing models that based the Soil-Water Characteristic Curve prediction on statistical analysis. It was found that although the predictions are acceptable for some ranges of suctions; they did not performed that well for others. It was found that the first model validated was accurate for fine-grained soils, while the second model was best for granular soils. For these reasons, two models to estimate the Soil-Water Characteristic Curve are proposed. The first model estimates the fitting parameters of the Fredlund and Xing (1994) function separately and then, the predicted parameters are fitted to the Fredlund and Xing function for an overall estimate of the degree of saturation. Results show an overall improvement on the predicted values when compared to existing models. The second model is based on the relationship between the Soil-Water Characteristic Curve and the Pore-Size Distribution of the soils. The process allows for the prediction of the entire Soil-Water Characteristic Curve function and proved to be a better approximation than that used in the first attempt. Both models constitute important tools in the implementation of unsaturated soil mechanics into engineering practice due to the link of the prediction with simple and well known engineering soil properties.
ContributorsTorres Hernández, Gustavo (Author) / Zapata, Claudia (Thesis advisor) / Houston, Sandra (Committee member) / Witczak, Matthew (Committee member) / Arizona State University (Publisher)
Created2011
149921-Thumbnail Image.png
Description
Arizona has an abundant solar resource and technologically mature systems are available to capture it, but solar energy systems are still considered to be an innovative technology. Adoption rates for solar and wind energy systems rise and fall with the political tides, and are relatively low in most rural areas

Arizona has an abundant solar resource and technologically mature systems are available to capture it, but solar energy systems are still considered to be an innovative technology. Adoption rates for solar and wind energy systems rise and fall with the political tides, and are relatively low in most rural areas in Arizona. This thesis tests the hypothesis that a consumer profile developed to characterize the adopters of renewable energy technology (RET) systems in rural Arizona is the same as the profile of other area residents who performed renovations, upgrades or additions to their homes. Residents of Santa Cruz and Cochise Counties who had obtained building permits to either install a solar or wind energy system or to perform a substantial renovation or upgrade to their home were surveyed to gather demographic, psychographic and behavioristic data. The data from 133 survey responses (76 from RET adopters and 57 from non-adopters) provided insights about their decisions regarding whether or not to adopt a RET system. The results, which are statistically significant at the 99% level of confidence, indicate that RET adopters had smaller households, were older and had higher education levels and greater income levels than the non-adopters. The research also provides answers to three related questions: First, are the energy conservation habits of RET adopters the same as those of non-adopters? Second, what were the sources of information consulted and the most important factors that motivated the decision to purchase a solar or wind energy system? And finally, are any of the factors which influenced the decision to live in a rural area in southeastern Arizona related to the decision to purchase a renewable energy system? The answers are provided, along with a series of recommendations that are designed to inform marketers and other promoters of RETs about how to utilize these results to help achieve their goals.
ContributorsPorter, Wayne Eliot (Author) / Reddy, T. Agami (Thesis advisor) / Pasqualetti, Martin (Committee member) / Larson, Kelli (Committee member) / Kennedy, Linda (Committee member) / Arizona State University (Publisher)
Created2011
149969-Thumbnail Image.png
Description
In the search for chemical biosensors designed for patient-based physiological applications, non-invasive diagnostic approaches continue to have value. The work described in this thesis builds upon previous breath analysis studies. In particular, it seeks to assess the adsorptive mechanisms active in both acetone and ethanol biosensors designed for

In the search for chemical biosensors designed for patient-based physiological applications, non-invasive diagnostic approaches continue to have value. The work described in this thesis builds upon previous breath analysis studies. In particular, it seeks to assess the adsorptive mechanisms active in both acetone and ethanol biosensors designed for breath analysis. The thermoelectric biosensors under investigation were constructed using a thermopile for transduction and four different materials for biorecognition. The analytes, acetone and ethanol, were evaluated under dry-air and humidified-air conditions. The biosensor response to acetone concentration was found to be both repeatable and linear, while the sensor response to ethanol presence was also found to be repeatable. The different biorecognition materials produced discernible thermoelectric responses that were characteristic for each analyte. The sensor output data is presented in this report. Additionally, the results were evaluated against a mathematical model for further analysis. Ultimately, a thermoelectric biosensor based upon adsorption chemistry was developed and characterized. Additional work is needed to characterize the physicochemical action mechanism.
ContributorsWilson, Kimberly (Author) / Guilbeau, Eric (Thesis advisor) / Pizziconi, Vincent (Thesis advisor) / LaBelle, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2011
149744-Thumbnail Image.png
Description
The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth

The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth surfaces from the polygonal domain has its share of issues and there is an inherent need to address various rendering bottlenecks that could hamper such a move. The game engine needs to choose an appropriate method based on in-game characteristics of the objects; character and animated objects need more sophisticated methods whereas static objects could use simpler techniques. Scaling the polygon count over various hardware platforms becomes an important factor. Much control is needed over the tessellation levels, either imposed by the hardware limitations or by the application, to be able to adaptively render the mesh without significant loss in performance. This thesis explores several methods that would help game engine developers in making correct design choices by optimally balancing the trade-offs while rendering the scene using smooth surfaces. It proposes a novel technique for adaptive tessellation of triangular meshes that vastly improves speed and tessellation count. It develops an approximate method for rendering Loop subdivision surfaces on tessellation enabled hardware. A taxonomy and evaluation of the methods is provided and a unified rendering system that provides automatic level of detail by switching between the methods is proposed.
ContributorsAmresh, Ashish (Author) / Farin, Gerlad (Thesis advisor) / Razdan, Anshuman (Thesis advisor) / Wonka, Peter (Committee member) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2011