Matching Items (38)
Filtering by

Clear all filters

131334-Thumbnail Image.png
Description
Psychological studies and feminist theories have determined the existence of many forms of
male bias in the English language. Male bias can be traced through American history in the form of laws of coverture and the categorization of women in law. Taking into account the connections between sexist language, history, and

Psychological studies and feminist theories have determined the existence of many forms of
male bias in the English language. Male bias can be traced through American history in the form of laws of coverture and the categorization of women in law. Taking into account the connections between sexist language, history, and law, this paper investigates 1) how and why legal language is biased, 2) why male bias has persisted in law over time, and 3) what impact male-biased law has on women. The works of ancient philosophers, feminist historians, psycholinguistic scientists, and modern philosophers of law are used to explain the patriarchal gender hierarchy’s influence on law. Case law and legal policies demonstrate that sexism has been maintained through history due to the preservation of male-biased language and the exclusion of women from the public sphere. Today, the use of masculine generics continues to taint the legal profession by reflecting, rather than denouncing, its patriarchal roots.
ContributorsHabib, Shanika Sabin (Author) / Stoff, Laurie (Thesis director) / Fedock, Rachel (Committee member) / Department of Psychology (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131149-Thumbnail Image.png
Description
As the canonical literature, student competencies and outcomes, and foundational courses of sustainability education are contested and reaffirmed, grounding this academic discipline in an experiential understanding of place is not often asserted as a core aspect of sustainability curriculum. Place can act both as a context and conduit for sustainability

As the canonical literature, student competencies and outcomes, and foundational courses of sustainability education are contested and reaffirmed, grounding this academic discipline in an experiential understanding of place is not often asserted as a core aspect of sustainability curriculum. Place can act both as a context and conduit for sustainability education, inspiring student investment in local communities and stewardship of the landscape. Through narrative descriptions of interviews held with professors, program coordinators, and deans from nine sustainability undergraduate programs across the United States, I explore in this thesis how different educators and institutions adopt place-based pedagogy within sustainability curriculum and institutional practice. In observation of these interviews, I name three factors of difference – physical and social setting, academic ethos, and institution size – as axes around which place is incorporated in sustainability instruction and within the college as a whole. Finally, I give general recommendations for incorporating place in sustainability instruction as well as certain creative and place-oriented assignment structures discussed in the interviews.
ContributorsOrrick, Kayla M (Author) / Hirt, Paul (Thesis director) / Bernier, Andrew (Committee member) / School of Sustainability (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132657-Thumbnail Image.png
Description
A posthuman figure like the female cyborg challenges traditional humanist feminism in ways that make room for theorizing new subjectivities and feminist epistemologies. Rather than support a traditional feminism that assumes common experiences within patriarchal society and erases differences among women, cyborg feminism moves beyond naturalism and essentialism to acknowledge

A posthuman figure like the female cyborg challenges traditional humanist feminism in ways that make room for theorizing new subjectivities and feminist epistemologies. Rather than support a traditional feminism that assumes common experiences within patriarchal society and erases differences among women, cyborg feminism moves beyond naturalism and essentialism to acknowledge complex, individual, and ever-changing identity. Three films, Fritz Lang’s Metropolis (1927), Ridley Scott’s Blade Runner (1982), and Alex Garland’s Ex Machina (2015), all offer such a vision of the female cyborg. In these films, the cyborg subject is a composite of machine and human—sometimes physical, dependent on the corporal mixing of flesh and machine, but just as often mental. Human sentiment, human memories, and human emotion merge with mechanical frames and electronic codes/coding to produce cyborgs. Importantly, every main cyborg in these films is coded as female. For each cyborg, a female body hosts preprogrammed sexuality and the emotions each creator thinks a woman should have, whether those are empathy, compassion, or submissiveness.

The cyborgs in these films, however, refuse to let categorizations like female, or even their status as human, alive, or real, restrict them so easily. As human-robot hybrids, cyborgs bridge identities that are assumed to be separate and often oppositional or mutually exclusive. Cyborgs reveal the structures and expectations reified in gender to suggest that something constructed can as easily be deconstructed. In doing so, they create loose ends that leave space for new understandings of both gender and technology. By viewing these films alongside critical theory, we can understand their cyborgs as subversive, hybrid characters. Accordingly, the cyborg as a figure subverts and fragments the coherency of narratives that present gender, technology, and identity in monolithic terms, not only helping us envision new possibilities but giving us the faculties to imagine them at all.
ContributorsMargolis, Madison Lawry (Author) / Dove-Viebahn, Aviva (Thesis director) / Miller, April (Committee member) / Department of English (Contributor, Contributor) / School of Film, Dance and Theatre (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
DescriptionA short film where female actresses are given the opportunity to play male Shakespeare roles breaking gender norms.
ContributorsLass, Alaina (Author) / Espinosa, Micha (Thesis director) / Hunt, Kristin (Committee member) / School of Community Resources and Development (Contributor) / School of International Letters and Cultures (Contributor) / School of Music, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
130855-Thumbnail Image.png
Description

The popularity of feminism is growing. Every day more people claim to be feminist and work is done to end the control of patriarchy. Feminism though, because of its different waves and isolated recognition in the media, the actual goals seem unclear to males in particular; it is predicted

The popularity of feminism is growing. Every day more people claim to be feminist and work is done to end the control of patriarchy. Feminism though, because of its different waves and isolated recognition in the media, the actual goals seem unclear to males in particular; it is predicted that this increase in popularity in conjunction with the lack of clarity contributes to the development of toxic masculinity. “Feminism” is defined by bell hooks as a movement to end sexism, sexist exploitation, and oppression and “toxic masculinity” is a specific model of manhood, geared toward dominance and control and fear of the opposite. To understand the relationship between the two, the documentaries The Mask You Live In and Miss Representation were reviewed as well as books by bell hooks and C.J. Pascoe. Popular culture articles contributed to contemporary views at the public level. Using the knowledge gained from the literature, further research was done through one-on-one interviews with males age 18 to 32. Much of the literature does support toxic masculinity being encouraged and reinforced in varying ways including through the lack of acceptance of femininity and society’s strict gender roles. The interviews were inconclusive in defining a direct relationship between feminism promoting the development of toxic masculinity.

ContributorsPorche, Jade M (Author) / Fedock, Rachel (Thesis director) / Alberts, Janet (Committee member) / Stoff, Laurie (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions.When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.
ContributorsMahant, Akhil (Author) / Zdrale, Gabriel (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2022-05
164791-Thumbnail Image.png
Description

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions.When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.

ContributorsMahant, Akhil (Author) / Zdrale, Gabriel (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
164792-Thumbnail Image.png
Description

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions.When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.

ContributorsMahant, Akhil (Author) / Zdrale, Gabriel (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05