Matching Items (53)
Filtering by

Clear all filters

148124-Thumbnail Image.png
Description

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known for its harmful effects on the environment and the extreme length of time it takes to decompose. According to the International Union for Conservation of Nature (IUCN), almost 8 million tons of plastic end up in the oceans at an annual rate, threatening not only the safety of marine species but also human health. Modern food packaging materials have included a blend of synthetic ingredients, trickling into our daily lives and polluting the air, water, and land. Single-use plastic items slowly degrade into microplastics and can take up to hundreds of years to biodegrade.<br/>Due to COVID-19, restaurants have switched to takeout and delivery options to adapt to the new business environment and guidelines enforced by the Center of Disease Control (CDC) mandated guidelines. Some of these guidelines include: notices encouraging social distancing and mask-wearing, mandated masks for employees, and easy access to sanitary supplies. This cultural shift is motivating restaurants to search for a quick, cheap, and easy fix to adapt to the increased demand of take-out and delivery methods. This increases their plastic consumption of items such as plastic bags/paper bags, styrofoam containers, and beverage cups. Plastic is the most popular takeout material because of its price and durability as well as allowing for limited contamination and easy disposability.<br/>Almost all food products come in packaging and this, more often than not, is single-use. Food is the largest market out of all the packaging industry, maintaining roughly two-thirds of material going to food. The US Environmental Protection Agency reports that almost half of all municipal solid waste is made up of food and food packaging materials. In 2014, over 162 million tons of packaging material waste was generated in the states. This typically contains toxic inks and dyes that leach into groundwater and soil. When degrading, pieces of plastic absorb toxins like PCBs and pesticides, and then each piece will, in turn, release toxic chemicals like Bisphenol-A. Even before being thrown away, it causes negative effects for the environment. The creation of packaging materials uses many resources such as petroleum and chemicals and then releases toxic byproducts. Such byproducts include sludge containing contaminants, greenhouse gases, and heavy metal and particulate matter emissions. Unlike many other industries, plastic manufacturing has actually increased production. Demand has increased and especially in the food industry to keep things sanitary. This increase in production is reflective of the increase in waste. <br/>Although restaurants have implemented their own sustainable initiatives to combat their carbon footprint, the pandemic has unfortunately forced restaurants to digress. For example, Just Salad, a fast-food restaurant chain, incentivized customers with discounted meals to use reusable bowls which saved over 75,000 pounds of plastic per year. However, when the pandemic hit, the company halted the program to pivot towards takeout and delivery. This effect is apparent on an international scale. Singapore was in lock-down for eight weeks and during that time, 1,470 tons of takeout and food delivery plastic waste was thrown out. In addition, the Hong Kong environmental group Greeners Action surveyed 2,000 people in April and the results showed that people are ordering out twice as much as last year, doubling the use of plastic.<br/>However, is this surge of plastic usage necessary in the food industry or are there methods that can be used to reduce the amount of waste production? The COVID-19 pandemic caused a fracture in the food system’s supply chain, involving food, factory, and farm. This thesis will strive to tackle such topics by analyzing the supply chains of the food industry and identify areas for sustainable opportunities. These recommendations will help to identify areas for green improvement.

ContributorsDeng, Aretha (Co-author) / Tao, Adlar (Co-author) / Vargas, Cassandra (Co-author) / Printezis, Antonios (Thesis director) / Konopka, John (Committee member) / Department of Supply Chain Management (Contributor) / School of International Letters and Cultures (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148015-Thumbnail Image.png
Description

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move towards cultivating a circular economy and benefiting the environment. With Arizona State University’s (ASU) extensive population of on-campus students and faculty, our team was determined to create a solution that would increase recycling rates. After conducting initial market research, our team incentives or education. We conducted market research through student surveys to determine the level of knowledge of our target audience and barriers to entry for local recycling and composting resources. Further, we gained insight into the medium of recycling and sustainability programs they would be interested in participating in. Overall, the results of our surveys demonstrated that a majority of students were interested in participating in these programs, if they were not already involved, and most students on-campus already had access to these resources. Despite having access to these sustainable practices, we identified a knowledge gap between students and their information on how to properly execute sustainable practices such as composting and recycling. In order to address this audience, our team created Circulearning, an educational program that aims to bridge the gap of knowledge and address immediate concerns regarding circular economy topics. By engaging audiences through our quick, accessible educational modules and teaching them about circular practices, we aim to inspire everyone to implement these practices into their own lives. Though our team began the initiative with a focus on implementing these practices solely to ASU campus, we decided to expand our target audience to implement educational programs at all levels after discovering the interest and need for this resource in our community. Our team is extremely excited that our Circulearning educational modules have been shared with a broad audience including students at Mesa Skyline High School, ASU students, and additional connections outside of ASU. With Circulearning, we will educate and inspire people of all ages to live more sustainably and better the environment in which we live.

ContributorsTam, Monet (Co-author) / Chakravarti, Renuka (Co-author) / Carr-Taylor, Kathleen (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147805-Thumbnail Image.png
Description

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move towards cultivating a circular economy and benefiting the environment. With Arizona State University’s (ASU) extensive population of on-campus students and faculty, our team was determined to create a solution that would increase recycling rates. After conducting initial market research, our team incentives or education. We conducted market research through student surveys to determine the level of knowledge of our target audience and barriers to entry for local recycling and composting resources. Further, we gained insight into the medium of recycling and sustainability programs they would be interested in participating in. Overall, the results of our surveys demonstrated that a majority of students were interested in participating in these programs, if they were not already involved, and most students on-campus already had access to these resources. Despite having access to these sustainable practices, we identified a knowledge gap between students and their information on how to properly execute sustainable practices such as composting and recycling. In order to address this audience, our team created Circulearning, an educational program that aims to bridge the gap of knowledge and address immediate concerns regarding circular economy topics. By engaging audiences through our quick, accessible educational modules and teaching them about circular practices, we aim to inspire everyone to implement these practices into their own lives. Though our team began the initiative with a focus on implementing these practices solely to ASU campus, we decided to expand our target audience to implement educational programs at all levels after discovering the interest and need for this resource in our community. Our team is extremely excited that our Circulearning educational modules have been shared with a broad audience including students at Mesa Skyline High School, ASU students, and additional connections outside of ASU. With Circulearning, we will educate and inspire people of all ages to live more sustainably and better the environment in which we live.

ContributorsCarr-Taylor, Kathleen Yushan (Co-author) / Tam, Monet (Co-author) / Chakravarti, Renuka (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Information Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148061-Thumbnail Image.png
Description

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known for its harmful effects on the environment and the extreme length of time it takes to decompose. According to the International Union for Conservation of Nature (IUCN), almost 8 million tons of plastic end up in the oceans at an annual rate, threatening not only the safety of marine species, but also human health. Modern food packaging materials have included a blend of synthetic ingredients, trickling into our daily lives and polluting the air, water, and land. Single-use plastic items slowly degrade into microplastics and can take up to hundreds of years to biodegrade.<br/>Due to COVID-19, restaurants have switched to takeout and delivery options to adapt to the new business environment and guidelines enforced by the Center of Disease Control (CDC) mandated guidelines.<br/>Some of these guidelines include: notices encouraging social distancing and mask-wearing, mandated masks for employees, and easy access to sanitary supplies.<br/>This cultural shift is motivating restaurants to search for a quick, cheap, and easy fix to adapt to the increased demand of take-out and delivery methods. This increases their plastic consumption of items such as plastic bags/paper bags, styrofoam containers, and beverage cups. Plastic is the most popular takeout material because of its price and durability as well as allowing for limited contamination and easy disposability.<br/>Almost all food products come in packaging and this, more often than not, is single use. Food is the largest market out of all the packaging industry, maintaining roughly two thirds of material going to food. The US Environmental Protection Agency reports that almost half of all municipal solid waste is made up of food and food packaging materials. In 2014, over 162 million tons of packaging material waste was generated in the states. This typically contains toxic inks and dyes that leach into groundwater and soil. When degrading, pieces of plastic absorb toxins like PCBs and pesticides, and then each piece will in turn release toxic chemicals like Bisphenol A. Even before being thrown away, it causes negative effects for the environment. The creation of packaging materials uses many resources such as petroleum and chemicals and then releases toxic byproducts. Such byproducts include sludge containing contaminants, greenhouse gases, and heavy metal and particulate matter emissions. Unlike many other industries, plastic manufacturing has actually increased production. Demand has increased and especially in the food industry to keep things sanitary. This increase in production is reflective of the increase in waste. <br/>Although restaurants have implemented their own sustainable initiatives to combat their carbon footprint, the pandemic has unfortunately forced restaurants to digress. For example, Just Salad, a fast food restaurant chain, incentivized customers with discounted meals to use reusable bowls which saved over 75,000 pounds of plastic per year. However, when the pandemic hit, the company halted the program to pivot towards takeout and delivery. This effect is apparent on an international scale. Singapore was in lock-down for eight weeks and during that time, 1,470 tons of takeout and food delivery plastic waste was thrown out. In addition, the Hong Kong environmental group Greeners Action surveyed 2,000 people in April and the results showed that people are ordering out twice as much as last year, doubling the use of plastic.<br/>However, is this surge of plastic usage necessary in the food industry or are there methods that can be used to reduce the amount of waste production? The COVID-19 pandemic caused a fracture in the food system’s supply chain, involving food, factory, and farm. This thesis will strive to tackle such topics by analyzing the supply chains of the food industry and identify areas for sustainable opportunities. These recommendations will help to identify areas for green improvement.

ContributorsTao, Adlar Z (Co-author) / Vargas, Cassandra (Co-author) / Deng, Aretha (Co-author) / Printezis, Antonios (Thesis director) / Konopka, John (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148070-Thumbnail Image.png
Description

Our Founders Lab team — Jacob Benevento, Sydney Evans, and Alec Whiteley — participated in a year-long entrepreneurial journey that led to the creation and launch of our venture, Certified Circular. Certified Circular is a program that certifies on-campus events for implementing circular practices into their activities as well as

Our Founders Lab team — Jacob Benevento, Sydney Evans, and Alec Whiteley — participated in a year-long entrepreneurial journey that led to the creation and launch of our venture, Certified Circular. Certified Circular is a program that certifies on-campus events for implementing circular practices into their activities as well as off-campus businesses. The venture was formed in response to our group’s propelling question and industry selection which called on us to create and market a venture within the ethical circular economy.

ContributorsEvans, Sydney Nicole Kollar (Co-author) / Benevento, Jacob (Co-author) / Whiteley, Alec (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148090-Thumbnail Image.png
Description

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known for its harmful effects on the environment and the extreme length of time it takes to decompose. According to the International Union for Conservation of Nature (IUCN), almost 8 million tons of plastic end up in the oceans at an annual rate, threatening not only the safety of marine species, but also human health. Modern food packaging materials have included a blend of synthetic ingredients, trickling into our daily lives and polluting the air, water, and land. Single-use plastic items slowly degrade into microplastics and can take up to hundreds of years to biodegrade.<br/>Due to COVID-19, restaurants have switched to takeout and delivery options to adapt to the new business environment and guidelines enforced by the Center of Disease Control (CDC) mandated guidelines.<br/>Some of these guidelines include: notices encouraging social distancing and mask-wearing, mandated masks for employees, and easy access to sanitary supplies.<br/>This cultural shift is motivating restaurants to search for a quick, cheap, and easy fix to adapt to the increased demand of take-out and delivery methods. This increases their plastic consumption of items such as plastic bags/paper bags, styrofoam containers, and beverage cups. Plastic is the most popular takeout material because of its price and durability as well as allowing for limited contamination and easy disposability.<br/>Almost all food products come in packaging and this, more often than not, is single use. Food is the largest market out of all the packaging industry, maintaining roughly two thirds of material going to food. The US Environmental Protection Agency reports that almost half of all municipal solid waste is made up of food and food packaging materials. In 2014, over 162 million tons of packaging material waste were generated in the states. This typically contains toxic inks and dyes that leach into groundwater and soil. When degrading, pieces of plastic absorb toxins like PCBs and pesticides, and then each piece will in turn release toxic chemicals like Bisphenol A. Even before being thrown away, it causes negative effects for the environment. The creation of packaging materials uses many resources such as petroleum and chemicals and then releases toxic byproducts. Such byproducts include sludge containing contaminants, greenhouse gases, and heavy metal and particulate matter emissions. Unlike many other industries, plastic manufacturing has actually increased production. Demand has increased and especially in the food industry to keep things sanitary. This increase in production is reflective of the increase in waste. <br/>Although restaurants have implemented their own sustainable initiatives to combat their carbon footprint, the pandemic has unfortunately forced restaurants to digress. For example, Just Salad, a fast-food restaurant chain, incentivized customers with discounted meals to use reusable bowls which saved over 75,000 pounds of plastic per year. However, when the pandemic hit, the company halted the program to pivot towards takeout and delivery. This effect is apparent on an international scale. Singapore was in lock-down for eight weeks and during that time, 1,470 tons of takeout and food delivery plastic waste was thrown out. In addition, the Hong Kong environmental group Greeners Action surveyed 2,000 people in April and the results showed that people are ordering out twice as much as last year, doubling the use of plastic.<br/>However, is this surge of plastic usage necessary in the food industry, or are there methods that can be used to reduce the amount of waste production? The COVID-19 pandemic caused a fracture in the food system’s supply chain, involving food, factory, and farm. This thesis will strive to tackle such topics by analyzing the supply chains of the food industry and identify areas for sustainable opportunities. These recommendations will help to identify areas for green improvement.

ContributorsVargas, Cassandra (Author) / Printezis, Antonios (Thesis director) / Konopka, John (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148222-Thumbnail Image.png
Description

When you are sitting at the terminal waiting for your flight or taking the bus to get to work, have you ever thought about who used your seat last? More importantly, have you ever thought about the last time that seat was cleaned? Sadly, it is uncertain to see if

When you are sitting at the terminal waiting for your flight or taking the bus to get to work, have you ever thought about who used your seat last? More importantly, have you ever thought about the last time that seat was cleaned? Sadly, it is uncertain to see if it was properly sanitized in the last hour, yesterday, in the last week, or even last month. Especially during these tough times, everyone wants to be assured that they are always in a safe and healthy environment. Through the Founders Lab, our team is collaborating with an engineering capstone team to bring automated seat cleaning technology into the market. This product is a custom-designed seat cover that is tear-resistant and provides a sanitary surface for anyone to sit on. When someone leaves the seat, a pressure sensor is triggered, and the cover is replaced with a secondary cover that was stored in a UV radiated container. The waterproof fabric and internal filters prevent spills and food crumbs from remaining when the user changes. The reason for bringing this product into the market is due to the unsanitary conditions in many high traffic areas. This technology can be implemented in public transportation, restaurants, sports stadiums, and much more. It will instantly improve the efficiency of sanitation for many businesses and keep a promise to its users that they will never bring something they sat on back home. #Safeseating

ContributorsJawahar, Nandita (Co-author) / Yang, Tiger (Co-author) / Nimmagadda, Viraj (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / School of Community Resources and Development (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151323-Thumbnail Image.png
Description
This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical evidence when applied to GPB. First, a qualitative assessment of

This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical evidence when applied to GPB. First, a qualitative assessment of the Theory of Planned Behavior (TPB), Norm Activation Theory (NAT), and Value-Belief-Norm Theory (VBN) is conducted to evaluate a) how well the phenomenon and concepts in each theory match the characteristics of pro-environmental behavior and b) how well the assumptions made in each theory match common assumptions made in purchasing theory. Second, a quantitative assessment of these three theories is conducted in which r2 values and methodological parameters (e.g., sample size) are collected from a sample of 21 empirical studies on GPB to evaluate the accuracy and generalize-ability of empirical evidence. In the qualitative assessment, the results show each theory has its advantages and disadvantages. The results also provide a theoretically-grounded roadmap for modifying each theory to be more suitable for GPB research. In the quantitative assessment, the TPB outperforms the other two theories in every aspect taken into consideration. It proves to 1) create the most accurate models 2) be supported by the most generalize-able empirical evidence and 3) be the most attractive theory to empiricists. Although the TPB establishes itself as the best foundational theory for an empiricist to start from, it's clear that a more comprehensive model is needed to achieve consistent results and improve our understanding of GPB. NAT and the Theory of Interpersonal Behavior (TIB) offer pathways to extend the TPB. The TIB seems particularly apt for this endeavor, while VBN does not appear to have much to offer. Overall, the TPB has already proven to hold a relatively high predictive value. But with the state of ecosystem services continuing to decline on a global scale, it's important for models of GPB to become more accurate and reliable. Better models have the capacity to help marketing professionals, product developers, and policy makers develop strategies for encouraging consumers to buy green products.
ContributorsRedd, Thomas Christopher (Author) / Dooley, Kevin (Thesis advisor) / Basile, George (Committee member) / Darnall, Nicole (Committee member) / Arizona State University (Publisher)
Created2012
150904-Thumbnail Image.png
Description
Ecolabels are the main driving force of consumer knowledge in the realm of sustainable product purchasing. While ecolabels strive to improve consumer's purchasing decisions, they have overwhelmed the market, leaving consumers confused and distrustful of what each label means. This study attempts to validate and understand environmental concerns commonly found

Ecolabels are the main driving force of consumer knowledge in the realm of sustainable product purchasing. While ecolabels strive to improve consumer's purchasing decisions, they have overwhelmed the market, leaving consumers confused and distrustful of what each label means. This study attempts to validate and understand environmental concerns commonly found in ecolabel criteria and the implications they have within the life cycle of a product. A life cycle assessment (LCA) case study of cosmetic products is used in comparison with current ecolabel program criteria to assess whether or not ecolabels are effectively driving environmental improvements in high impact areas throughout the life cycle of a product. Focus is placed on determining the general issues addressed by ecolabelling criteria and how these issues relate to hotspots derived through a practiced scientific methodology. Through this analysis, it was determined that a majority the top performing supply chain environmental impacts are covered, in some fashion, within ecolabelling criteria, but some, such as agricultural land occupation, are covered to a lesser extent or not at all. Additional criteria are suggested to fill the gaps found in ecolabelling programs and better address the environmental impacts most pertinent to the supply chain. Ecolabels have also been found to have a broader coverage then what can currently be addressed using LCA. The results of this analysis have led to a set of recommendations for furthering the integration between ecolabels and life cycle tools.
ContributorsBernardo, Melissa (Author) / Dooley, Kevin (Thesis advisor) / Chester, Mikhail (Thesis advisor) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2012
150979-Thumbnail Image.png
Description
I present a new framework for qualitative assessment of the current green purchasing practices of U.S. state governments. Increasing demand from citizens for green public purchasing has prompted state governments to adopt new, and improve existing, practices. Yet there has been little assessment of public green purchasing in academic research;

I present a new framework for qualitative assessment of the current green purchasing practices of U.S. state governments. Increasing demand from citizens for green public purchasing has prompted state governments to adopt new, and improve existing, practices. Yet there has been little assessment of public green purchasing in academic research; what has been done has not provided the conceptual support necessary to assess green purchasing practices as a single component of the procurement process. My research aims to fill that gap by developing a conceptual framework with which to assess the status of green purchasing practices and by applying this framework to determine and describe the status of green purchasing in the five most populous U.S. states. The framework looks at state purchasing practices through the lenses of policy, policy implementation, and transparency.
ContributorsSharma, Lucky (Author) / Melnick, Rob (Thesis advisor) / Dooley, Kevin (Thesis advisor) / Basile, George (Committee member) / Arizona State University (Publisher)
Created2012