Matching Items (15)
Filtering by

Clear all filters

152282-Thumbnail Image.png
Description
Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char,

Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char, charcoal and soot. These sub-classifications range in particle size, formation temperature, and relative reactivity. Interest in BC has increased because of its role in the long-term storage of organic matter and the biogeochemistry of urban areas. The global BC budget is unbalanced. Production of BC greatly outweighs decomposition of BC. This suggests that there are unknown or underestimated BC removal processes, and it is likely that some of these processes are occurring in soils. However, little is known about BC reactivity in soil and especially in desert soil. This work focuses on soot BC, which is formed at higher temperatures and has a lower relative reactivity than other forms of BC. Here, I assess the contribution of soot BC to central AZ soils and use the isotopic composition of soot BC to identify sources of soot BC. Soot BC is a significant (31%) fraction of the soil organic matter in central AZ and this work suggests that desert and urban soils may be a storage reservoir for soot BC. I further identify previously unknown removal processes of soot BC found naturally in soil and demonstrate that soil soot BC undergoes abiotic (photo-oxidation) and biotic reactions. Not only is soot BC degraded by these processes, but its chemical composition is altered, suggesting that soot BC contains some chemical moieties that are more reactive than others. Because soot BC demonstrates both refractory and reactive character, it is likely that the structure of soot BC; therefore, its interactions in the environment are complex and it is not simply a recalcitrant material.
ContributorsHamilton, George (Author) / Hartnett, Hilairy E (Thesis advisor) / Herckes, Pierre (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2013
149926-Thumbnail Image.png
Description
A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes

A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes of remote identification. Protein patterns were generated using high performance liquid chromatography (HPLC). Patterns created could identify high-traffic and low-traffic indoor spaces. Samples were collected from the air using air pumps to draw air through a filter paper trapping particulates, including large amounts of shed protein matter. In complimentary research aerosolized biological samples were collected from various ecosystems throughout Ecuador to explore the relationship between environmental setting and aerosolized protein concentrations. In order to further enhance protein separation and produce more detailed patterns for the identification of individual organisms of interest; a novel separation device was constructed and characterized. The separation device incorporates a longitudinal gradient as well as insulating dielectrophoretic features within a single channel. This design allows for the production of stronger local field gradients along a global gradient allowing particles to enter, initially transported through the channel by electrophoresis and electroosmosis, and to be isolated according to their characteristic physical properties, including charge, polarizability, deformability, surface charge mobility, dielectric features, and local capacitance. Thus, different types of particles are simultaneously separated at different points along the channel distance given small variations of properties. The device has shown the ability to separate analytes over a large dynamic range of size, from 20 nm to 1 μm, roughly the size of proteins to the size of cells. In the study of different sized sulfate capped polystyrene particles were shown to be selectively captured as well as concentrating particles from 103 to 106 times. Qualitative capture and manipulation of β-amyloid fibrils were also shown. The results demonstrate the selective focusing ability of the technique; and it may form the foundation for a versatile tool for separating complex mixtures. Combined this work shows promise for future identification of individual organisms from aerosolized protein as well as for applications in biomedical research.
ContributorsStaton, Sarah J. R (Author) / Hayes, Mark A. (Committee member) / Anbar, Ariel D (Committee member) / Shock, Everett (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
150749-Thumbnail Image.png
Description
Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients,

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.
ContributorsNoonan, Kathryn Alexander (Author) / Hartnett, Hilairy (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Shock, Everett (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
153956-Thumbnail Image.png
Description
Natural variations in 238U/235U of marine carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~ 8.5 to study possible U isotope fractionation during incorporation into

Natural variations in 238U/235U of marine carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~ 8.5 to study possible U isotope fractionation during incorporation into these minerals.

Small but significant U isotope fractionation was observed in aragonite experiments at pH ~ 8.5, with heavier U in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007+0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3 (aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism.

These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2, [Ca], or [Mg] concentrations. In general, these effects are likely to be small (<0.13 ‰), but are nevertheless potentially significant because of the small natural range of variation of 238U/235U.
ContributorsChen, Xinming (Author) / Anbar, Ariel (Thesis advisor) / Herckes, Pierre (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2015
156103-Thumbnail Image.png
Description
Carboxylic acids are an abundant and reactive species present throughout our solar system. The reactions of carboxylic acids can shape the organic abundances within oil field brines, carbonaceous chondrites, and different ranks of coal.

I have performed hydrothermal experiments with model aromatic carboxylic acids in the presences of different oxide

Carboxylic acids are an abundant and reactive species present throughout our solar system. The reactions of carboxylic acids can shape the organic abundances within oil field brines, carbonaceous chondrites, and different ranks of coal.

I have performed hydrothermal experiments with model aromatic carboxylic acids in the presences of different oxide minerals to investigate the reactions available to carboxylic acids in the presence of mineral surfaces. By performing experiments containing one organic compound and one mineral surface, I can begin to unravel the different reactions that can occur in the presence of different minerals.

I performed experiments with phenylacetic acid (PAA), hydrocinnamic acid (HCA) and benzoic acid (BA) in the presence of spinel (MgAl2O4), magnetite (Fe3O4), hematite (Fe2O3), and corundum (Al2O3). The focus of this work was metal oxide minerals, with and without transition metal atoms, and with different crystal structures. I found that all four oxide minerals facilitated ketonic decarboxylation reactions of carboxylic acids to form ketone structures. The two minerals containing transition metals (magnetite and hematite) also opened a reaction path involving electrochemical oxidation of one carboxylic acid, PAA, to the shorter chain version of a second carboxylic acid, BA, in experiments starting with PAA. Fundamental studies like these can help to shape our knowledge of the breadth of organic reactions that are possible in geologic systems and the mechanisms of those reactions.
ContributorsJohnson, Kristin Nicole (Author) / Shock, Everett (Thesis advisor) / Hartnett, Hilairy (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2017
157423-Thumbnail Image.png
Description
Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth.

Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth. This study drew upon localized rain gauge data and four data-sets of cover-line and biomass data to estimate ANPP and to determine annual precipitation (PPT). I measured soil depth to caliche and texture by layer of 112 plots across the four landscape units for which estimation of ANPP were available. A pedotransfer function was used to estimate AWHC from soil depth increments to depth of caliche measurements and texture analysis. These data were analyzed using simple and multivariate regression to test the effect of annual precipitation and available water holding capacity on aboveground net primary production. Soil texture remained constant among all plots (sandy loam) and depth to caliche varied from 15.16 cm to 189 cm. AWHC and the interaction term (PPT*AWHC) were insignificant (p=0.142, p=0.838) and annual PPT accounted for 18.4% of the variation in ANPP. The y-intercept was significantly different for ANPP ~ annual PPT when considering AWHC values either above or below 3 cm. Shrub ANPP was insensitive to precipitation regardless of AWHC (R2=-0.012, R2=0.014). Results from this study indicate that a model incorporating annual PPT and AWHC may not serve as a good predictor for ANPP at a site level where there is little variation in soil texture.
ContributorsWagner, Svenja K (Author) / Sala, Osvaldo E. (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Peters, Debra (Committee member) / Arizona State University (Publisher)
Created2019
136800-Thumbnail Image.png
Description
In this project, I investigated the ecosystem services, or lack thereof, that landscape designs created in terms of microclimate modification at 11 residential homes throughout the Phoenix Metro Area. I also created an article for the homeowners who participated, explaining what I did and how they could apply my research.

In this project, I investigated the ecosystem services, or lack thereof, that landscape designs created in terms of microclimate modification at 11 residential homes throughout the Phoenix Metro Area. I also created an article for the homeowners who participated, explaining what I did and how they could apply my research. My research question was how a person can achieve a comfortable outdoor climate in their yard without over-using scarce water resources. I hypothesized that there would be a negative correlation between the maximum air temperature and the percent shade in each yard, regardless of the percent grass. I analyzed the data I collected using the program, R, and discovered that my hypothesis was supported for the month of July. These results are in line with previous studies on the subject and can help homeowners make informed decisions about the effects their landscaping choices might have.
ContributorsBarton, Erin Michaela (Author) / Hall, Sharon (Thesis director) / Ruddell, Benjamin (Committee member) / Spielmann, Katherine (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2014-05
134888-Thumbnail Image.png
Description
The Prosopis genus of trees, also known as mesquites, are uniquely equipped to allow for an agroforestry regime in which crops can be grown beneath the canopy of the tree. Mesquites have the ability to redistribute water moisture in such a way that allows plants under the canopy to use

The Prosopis genus of trees, also known as mesquites, are uniquely equipped to allow for an agroforestry regime in which crops can be grown beneath the canopy of the tree. Mesquites have the ability to redistribute water moisture in such a way that allows plants under the canopy to use water that has been brought up by the roots of mesquite trees. This means that there is a potential for food crops to be grown under the trees without using additional irrigation measures. This could be used where access to water is limited or for a sustainability-minded farmer who is trying to reduce water inputs in an arid environment. Mesquite trees produce a variety of products, including lumber and bean pods that can be ground down into an edible flour. Both products demand a high price in the marketplace and are produced in addition to the crops that can potentially be grown beneath the mesquite tree. In order to determine whether or not it is possible to grow crops under mesquite trees, I reviewed a wide range of literature regarding hydraulic redistribution, mesquite trees in general, and what plants might be best suited for growing beneath a mesquite. The list of plants was narrowed down to four crops that seemed most likely to survive in shaded, low water conditions in a hot environment. There has not been any research done on crops growing beneath mesquite trees, so the next step for research would be to experiment with each of the crops to determine how well each species can adapt to the specified conditions.
ContributorsMesser, Luke Winston (Author) / Eakin, Hallie (Thesis director) / Hall, Sharon (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154903-Thumbnail Image.png
Description
Dust storms known as 'haboobs' occur in the City of Tempe, AZ during the North American monsoon season. A haboob classification method based on meteorological and air quality measurements is described. There were from 3 to 20 haboob events per year over the period from 2005 to 2014. The calculated

Dust storms known as 'haboobs' occur in the City of Tempe, AZ during the North American monsoon season. A haboob classification method based on meteorological and air quality measurements is described. There were from 3 to 20 haboob events per year over the period from 2005 to 2014. The calculated annual TSP (total suspended particulate) dry deposition during haboobs is estimated to contribute 74% of the total particulate mass deposited in Tempe, AZ.

Dry deposition is compared with the aqueous chemistry of Tempe Town Lake. Water management and other factors may have a stronger impact on Tempe Town Lake chemistry than haboob dry-deposition. Haboobs alter the Polycyclic Aromatic Hydrocarbon (PAH) concentrations and distributions in Tempe, AZ. PAH isomer ratios suggest PM2.5 (particulate matter with aerodynamic diameters less than or equal to 2.5 μm) sources consistent with approximate thunderstorm outflow paths.

The importance of the atmospheric aqueous phase, fogs and clouds, for the processing and removal of PAHs is not well known. A multiphase model was developed to determine the fate and lifetime of PAHs in fogs and clouds. The model employed literature values that describe the partitioning between three phases (aqueous, liquid organic, and gas), in situ PAH measurements, and experimental and estimated (photo)oxidation rates. At 25 °C, PAHs with two, three and four rings were predicted to be primarily gas phase (fraction in the gas phase xg > 90 %) while five- and six-ring PAHs partitioned significantly into droplets (xg < 60 %) with aqueous phase fractions of 1 to 6 % and liquid organic phase fractions of 31 to 91 %. The predicted atmospheric lifetimes of PAHs in the presence of fog or cloud droplets (< 5 hours) were significantly shorter than literature predictions of PAH wet and dry deposition lifetimes (1 to 14 days and 5 to 15 months respectively) and shorter than or equal to predicted PAH gas phase / particle phase atmospheric lifetimes (1 to 300 hours). The aqueous phase cannot be neglected as a PAH sink due to the large aqueous volume (vs. organic volume) and the relatively fast aqueous reactions.
ContributorsEagar, Jershon (Author) / Herckes, Pierre (Thesis advisor) / Hayes, Mark (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2016
152115-Thumbnail Image.png
Description
Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.
ContributorsMyers, Natalie Kristine (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Hall, Sharon (Committee member) / Turner, Benjamin (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013