Matching Items (31)
Filtering by

Clear all filters

152207-Thumbnail Image.png
Description
Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis,

Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis, where CO2 benefits occurring during use of the PV panels is found to exceed emissions generated during the PV manufacturing phase including materials extraction and manufacture of the PV panels prior to installation. However, this approach neglects to recognize that the environmental costs of CO2 release during manufacture are incurred early, while environmental benefits accrue later. Thus, where specific policy targets suggest meeting CO2 reduction targets established by a certain date, rapid PV deployment may have counter-intuitive, albeit temporary, undesired consequences. Thus, on a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood. This phenomenon is particularly acute when PV manufacture occurs in areas using CO2 intensive energy sources (e.g., coal), but deployment occurs in areas with less CO2 intensive electricity sources (e.g., hydro). This thesis builds a dynamic Cumulative Radiative Forcing (CRF) model to examine the inter-temporal warming impacts of PV deployments in three locations: California, Wyoming and Arizona. The model includes the following factors that impact CRF: PV deployment rate, choice of PV technology, pace of PV technology improvements, and CO2 intensity in the electricity mix at manufacturing and deployment locations. Wyoming and California show the highest and lowest CRF benefits as they have the most and least CO2 intensive grids, respectively. CRF payback times are longer than CO2 payback times in all cases. Thin film, CdTe PV technologies have the lowest manufacturing CO2 emissions and therefore the shortest CRF payback times. This model can inform policies intended to fulfill time-sensitive CO2 mitigation goals while minimizing short term radiative forcing.
ContributorsTriplican Ravikumar, Dwarakanath (Author) / Seager, Thomas P (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Chester, Mikhail V (Committee member) / Sinha, Parikhit (Committee member) / Arizona State University (Publisher)
Created2013
151919-Thumbnail Image.png
Description
In the past three decades alone, the United States has witnessed a dramatic rise in the prevalence of obesity and overweight in adults and children. Efforts towards obesity mitigation and prevention have produced promising recommendations and researchers and practitioners alike acknowledge that real solutions must match the complexity of the

In the past three decades alone, the United States has witnessed a dramatic rise in the prevalence of obesity and overweight in adults and children. Efforts towards obesity mitigation and prevention have produced promising recommendations and researchers and practitioners alike acknowledge that real solutions must match the complexity of the problem. Comprehensive approaches that target environmental, economic, socio-cultural, and knowledge-based factors that influence diet and physical activity are highly recommended. However, the literature yields little in the way of what such comprehensive obesity interventions actually entail and how they ought to be developed. In particular, there are knowledge gaps in how various stakeholder groups can bridge institutional barriers to collaborate in ways that maximize resources, build upon synergies, and avoid duplication of efforts; and how specific recommendations are actually implemented. This thesis aims to contribute to an emerging body of literature that fills this gap by presenting a practical case study on how to create a playground obesity intervention in the Gateway District of Phoenix, Arizona, in collaboration with researchers, health professionals, neighborhood residents, and city officials. The objectives were two-fold: 1. To outline concrete steps that will allow an organization to create a playground linked with healthy kids education program that aims to increase physical activity, perceptions of safety, and community cohesion; 2. To outline how diverse stakeholders can collaborate effectively to create such a cohesive, complex obesity intervention. A detailed, actionable intervention manual was drafted through semi-structured interviews, literature review, a survey, a stakeholder workshop, and an extended peer-review. The manual describes the sequence of actions necessary for creating an innovative playground that reinforces learning, encourages creative play, and increases physical activity. The sequence of actions was linked with existing local assets, stakeholder roles and responsibilities, costs, and potential barriers. This manual, as well as the process itself, can serve as a transferable model for helping organizations come together to build the capacity required in order to tackle complex health challenges.
ContributorsXiong, Angela (Author) / Wiek, Arnim (Thesis advisor) / Golub, Aaron (Committee member) / Otu, Essen (Committee member) / Arizona State University (Publisher)
Created2013
151973-Thumbnail Image.png
Description
Cities around the globe struggle with socio-economic disparities, resource inefficiency, environmental contamination, and quality-of-life challenges. Technological innovation, as one prominent approach to problem solving, promises to address these challenges; yet, introducing new technologies, such as nanotechnology, into society and cities has often resulted in negative consequences. Recent research has conceptually

Cities around the globe struggle with socio-economic disparities, resource inefficiency, environmental contamination, and quality-of-life challenges. Technological innovation, as one prominent approach to problem solving, promises to address these challenges; yet, introducing new technologies, such as nanotechnology, into society and cities has often resulted in negative consequences. Recent research has conceptually linked anticipatory governance and sustainability science: to understand the role of technology in complex problems our societies face; to anticipate negative consequences of technological innovation; and to promote long-term oriented and responsible governance of technologies. This dissertation advances this link conceptually and empirically, focusing on nanotechnology and urban sustainability challenges. The guiding question for this dissertation research is: How can nanotechnology be innovated and governed in responsible ways and with sustainable outcomes? The dissertation: analyzes the nanotechnology innovation process from an actor- and activities-oriented perspective (Chapter 2); assesses this innovation process from a comprehensive perspective on sustainable governance (Chapter 3); constructs a small set of future scenarios to consider future implications of different nanotechnology governance models (Chapter 4); and appraises the amenability of sustainability problems to nanotechnological interventions (Chapter 5). The four studies are based on data collected through literature review, document analysis, participant observation, interviews, workshops, and walking audits, as part of process analysis, scenario construction, and technology assessment. Research was conducted in collaboration with representatives from industry, government agencies, and civic organizations. The empirical parts of the four studies focus on Metropolitan Phoenix. Findings suggest that: predefined mandates and economic goals dominate the nanotechnology innovation process; normative responsibilities identified by risk governance, sustainability-oriented governance, and anticipatory governance are infrequently considered in the nanotechnology innovation process; different governance models will have major impacts on the role and effects of nanotechnology in cities in the future; and nanotechnologies, currently, do not effectively address the root causes of urban sustainability challenges and require complementary solution approaches. This dissertation contributes to the concepts of anticipatory governance and sustainability science on how to constructively guide nanotechnological innovation in order to harvest its positive potential and safeguard against negative consequences.
ContributorsFoley, Rider Williams (Author) / Wiek, Arnim (Thesis advisor) / Guston, David H. (Committee member) / Seager, Thomas P (Committee member) / Minteer, Ben A (Committee member) / Arizona State University (Publisher)
Created2013
151673-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the

Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the cases of emerging technologies, where data is unavailable and rapid technological advances outstrip environmental knowledge. Previous studies have demonstrated several shortcomings to existing practices, including the masking of environmental impacts, the difficulty of selecting appropriate weight sets for multi-stakeholder problems, and difficulties in exploration of variability and uncertainty. In particular, there is an acute need for decision-driven interpretation methods that can guide decision makers towards making balanced, environmentally sound decisions in instances of high uncertainty. We propose the first major methodological innovation in LCA since early establishment of LCA as the analytical perspective of choice in problems of environmental management. We propose to couple stochastic multi-criteria decision analytic tools with existing approaches to inventory building and characterization to create a robust approach to comparative technology assessment in the context of high uncertainty, rapid technological change, and evolving stakeholder values. Namely, this study introduces a novel method known as Stochastic Multi-attribute Analysis for Life Cycle Impact Assessment (SMAA-LCIA) that uses internal normalization by means of outranking and exploration of feasible weight spaces.
ContributorsPrado, Valentina (Author) / Seager, Thomas P (Thesis advisor) / Landis, Amy E. (Committee member) / Chester, Mikhail (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2013
152268-Thumbnail Image.png
Description
Over the last two decades programs and mandates to encourage and foster sustainable urban development have arisen throughout the world, as cities have emerged as key opportunity sites for sustainable development due to the compactness and localization of services and resources. In order to recognize this potential, scholars and practitioners

Over the last two decades programs and mandates to encourage and foster sustainable urban development have arisen throughout the world, as cities have emerged as key opportunity sites for sustainable development due to the compactness and localization of services and resources. In order to recognize this potential, scholars and practitioners have turned to the practice of visioning as a way to motivate actions and decision making toward a sustainable future. A "vision" is defined as desirable state in the future and scholars believe that the creation of a shared, motivational vision is the best starting point to catalyze positive and sustainable change. However, recent studies on city visions indicate that they do not offer substantive sustainability content, and methods or processes to evaluate the sustainability content of the resulting vision (sustainability appraisal or assessment) are often absent from the visioning process. Thus, this paper explores methods for sustainability appraisal and their potential contributions to (and in) visioning. The goal is to uncover the elements of a robust sustainability appraisal and integrate them into the visioning process. I propose an integrated sustainability appraisal procedure based on sustainability criteria, indicators, and targets as part of a visioning methodology that was developed by a team of researchers at Arizona State University (ASU) of which I was a part. I demonstrate the applicability of the appraisal method in a case study of visioning in Phoenix, Arizona. The proposed method allows for early and frequent consideration and evaluation of sustainability objectives for urban development throughout the visioning process and will result in more sustainability-oriented visions. Further, it can allow for better measurement and monitoring of progress towards sustainability goals, which can make the goals more tangible and lead to more accountability for making progress towards the development of more sustainable cities in the future.
ContributorsMinowitz, Amy (Author) / Wiek, Arnim (Thesis advisor) / Golub, Aaron (Committee member) / Pfeiffer, Deirdre (Committee member) / Arizona State University (Publisher)
Created2013
152323-Thumbnail Image.png
Description
Sustainability visioning (i.e. the construction of sustainable future states) is considered an important component of sustainability research, for instance, in transformational sustainability science or in planning for urban sustainability. Visioning frees sustainability research from the dominant focus on analyzing problem constellations and opens it towards positive contributions to social innovation

Sustainability visioning (i.e. the construction of sustainable future states) is considered an important component of sustainability research, for instance, in transformational sustainability science or in planning for urban sustainability. Visioning frees sustainability research from the dominant focus on analyzing problem constellations and opens it towards positive contributions to social innovation and transformation. Calls are repeatedly made for visions that can guide us towards sustainable futures. Scattered across a broad range of fields (i.e. business, non-government organization, land-use management, natural resource management, sustainability science, urban and regional planning) are an abundance of visioning studies. However, among the few evaluative studies in the literature there are apparent deficits in both the research and practice of visioning that curtails our expectations and prospects of realizing process-based and product-derived outcomes. These deficits suggests that calls instead should focus on the development of applied and theoretical understanding of crafting sustainability visions, enhancing the rigor and robustness of visioning methodology, and on integrating practice, research, and education for collaborative sustainability visioning. From an analysis of prominent visioning and sustainability visioning studies in the literature, this dissertation articulates what is sustainability visioning and synthesizes a conceptual framework for criteria-based design and evaluation of sustainability visioning studies. While current visioning methodologies comply with some of these guidelines, none adhere to all of them. From this research, a novel sustainability visioning methodology is designed to address this gap to craft visions that are shared, systemic, principles-based, action-oriented, relevant, and creative (i.e. SPARC visioning methodology) and evaluated across all quality criteria. Empirical studies were conducted to test and apply the conceptual and methodological frameworks -- with an emphasis on enhancing the rigor and robustness in real world visioning processes for urban planning and teaching sustainability competencies. In-depth descriptions of the collaborative visioning studies demonstrate tangible outcomes for: (a) implementing the above sustainability visioning methodology, including evaluative procedures; (b) adopting meaningful interactive engagement procedures; (c) integrating advanced analytical modeling, sustainability appraisal, and creativity enhancing procedures; and (d) developing perspective and methodological capacity for long-range sustainability planning.
ContributorsIwaniec, David (Author) / Wiek, Arnim (Thesis advisor) / Childers, Daniel L. (Committee member) / Lant, Timothy (Committee member) / Arizona State University (Publisher)
Created2013
152491-Thumbnail Image.png
Description
Transformational sustainability science demands that stakeholders and researchers consider the needs and values of future generations in pursuit of solutions to sustainability problems. This dissertation research focuses on the real-world problem of unsustainable water governance in the Phoenix region of Central Arizona. A sustainability transition is the local water system

Transformational sustainability science demands that stakeholders and researchers consider the needs and values of future generations in pursuit of solutions to sustainability problems. This dissertation research focuses on the real-world problem of unsustainable water governance in the Phoenix region of Central Arizona. A sustainability transition is the local water system is necessary to overcome sustainability challenges and scenarios can be used to explore plausible and desirable futures to inform a transition, but this requires some methodological refinements. This dissertation refines scenario methodology to generate water governance scenarios for metropolitan Phoenix that: (i) feature enhanced stakeholder participation; (ii) incorporate normative values and preferences; (iii) focus on governance actors and their activities; and (iv) meet an expanded set of quality criteria. The first study in the dissertation analyzes and evaluates participatory climate change scenarios to provide recommendations for the construction and use of scenarios that advance climate adaptation and mitigation efforts. The second study proposes and tests a set of plausibility indications to substantiate or evaluate claims that scenarios and future projections could become reality, helping to establish the legitimacy of radically different or transformative scenarios among an extended peer community. The case study of water governance begins with the third study, which includes a current state analysis and sustainability appraisal of the Phoenix-area water system. This is followed by a fourth study which surveys Phoenix-area water decision-makers to better understand water-related preferences for use in scenario construction. The fifth and final study applies a multi-method approach to construct future scenarios of water governance in metropolitan Phoenix in 2030 using stakeholder preferences, among other normative frames, and testing systemic impacts with WaterSim 5.0, a dynamic simulation model of water in the region. The scenarios are boundary objects around which stakeholders can weigh tradeoffs, set priorities and reflect on impacts of water-related activities, broadening policy dialogues around water governance in central Arizona. Together the five studies advance transformational sustainability research by refining methods to engage stakeholders in crafting futures that define how individuals and institutions should operate in transformed and sustainable systems.
ContributorsKeeler, Lauren Withycombe (Author) / Wiek, Arnim (Thesis advisor) / White, Dave D (Committee member) / Lang, Daniel J (Committee member) / Arizona State University (Publisher)
Created2014
152629-Thumbnail Image.png
Description
Over the past few decades, businesses globally have advanced in incorporating the principles of sustainability as they strive to align economic outcomes with growing and complex social and environmental demands and opportunities. This transition is conditioned by the maturity, scale, and geographical location of a business (among other factors), with

Over the past few decades, businesses globally have advanced in incorporating the principles of sustainability as they strive to align economic outcomes with growing and complex social and environmental demands and opportunities. This transition is conditioned by the maturity, scale, and geographical location of a business (among other factors), with particular challenges placed on small enterprises in middle- to low-income communities. Within this context, the overarching research question of this dissertation is why and how business incubation processes may foster sustainable enterprises at the middle and base of the socioeconomic pyramid (MoP/BoP). To explore this question, in this project I used as a case study the experience of a network of social business incubators operated by Tecnologico de Monterrey, a private, non-profit, multi-campus university system in Mexico. Centering on its campus in Guadalajara and in order to understand if and how MoP/BoP businesses address sustainability, I developed a current state assessment of incubator processes, analyzing during two semesters the activities of incubated entrepreneurs and their goals, motivations, and outcomes. The general expectation at the outset of the study was that Tec's social business incubation process, in both its design and implementation, focuses on the economic viability and outcomes of incubated projects and hence does not promote entrepreneur commitment to sustainability goals and practices. The general approach of the research project involved a qualitative, in-depth ethnographic assessment of participants. Data were collected by means of the following research tools: (a) archival and documentary review, (b) participant observation, (c) surveys of participants (entrepreneurs and advisors/mentors), and (d) semi-structured interviews of participants. The overall design of the research was inspired by the transitions management approach and by the intervention research method, while qualitative results were assessed under the grounded theory approach. Results of the research are reported under three general categories: (a) analysis of entrepreneur goals, motivations, and outcomes, (b) identification of social and environmental opportunities, and (c) review of the role of social networks and broader support structures. While results confirmed the general expectation of the study, it was possible to establish (based on the interaction with the entrepreneurs and other actors) that there is both interest and commitment to identify and explore opportunities in social and environmental issues. Thus, the dissertation concludes with a proposal for potential future interventions in this social incubator, exploring a new vision and strategies for a transition to a more sustainability-oriented approach. Finally, key recommendations define the most critical elements of an agenda for transition in the social incubation process at Campus Guadalajara and provide input for other efforts.
ContributorsWood, Mark Williams (Author) / Redman, Charles L. (Thesis advisor) / Wiek, Arnim (Committee member) / Basile, George M (Committee member) / Arizona State University (Publisher)
Created2014
153424-Thumbnail Image.png
Description
Comparative life cycle assessment (LCA) evaluates the relative performance of multiple products, services, or technologies with the purpose of selecting the least impactful alternative. Nevertheless, characterized results are seldom conclusive. When one alternative performs best in some aspects, it may also performs worse in others. These tradeoffs among different impact

Comparative life cycle assessment (LCA) evaluates the relative performance of multiple products, services, or technologies with the purpose of selecting the least impactful alternative. Nevertheless, characterized results are seldom conclusive. When one alternative performs best in some aspects, it may also performs worse in others. These tradeoffs among different impact categories make it difficult to identify environmentally preferable alternatives. To help reconcile this dilemma, LCA analysts have the option to apply normalization and weighting to generate comparisons based upon a single score. However, these approaches can be misleading because they suffer from problems of reference dataset incompletion, linear and fully compensatory aggregation, masking of salient tradeoffs, weight insensitivity and difficulties incorporating uncertainty in performance assessment and weights. Consequently, most LCA studies truncate impacts assessment at characterization, which leaves decision-makers to confront highly uncertain multi-criteria problems without the aid of analytic guideposts. This study introduces Stochastic Multi attribute Analysis (SMAA), a novel approach to normalization and weighting of characterized life-cycle inventory data for use in comparative Life Cycle Assessment (LCA). The proposed method avoids the bias introduced by external normalization references, and is capable of exploring high uncertainty in both the input parameters and weights.
ContributorsPrado, Valentina (Author) / Seager, Thomas P (Thesis advisor) / Chester, Mikhail V (Committee member) / Kullapa Soratana (Committee member) / Tervonen, Tommi (Committee member) / Arizona State University (Publisher)
Created2015
153519-Thumbnail Image.png
Description
Advancing sustainable food systems requires holistic understanding and solutions-oriented approaches that transcend disciplines, so expertise in a variety of subjects is necessary. Proposed solutions are usually technically or socially oriented, but disagreement over the best approach to the future of food dominates the dialogue. Technological optimists argue that scientific advances

Advancing sustainable food systems requires holistic understanding and solutions-oriented approaches that transcend disciplines, so expertise in a variety of subjects is necessary. Proposed solutions are usually technically or socially oriented, but disagreement over the best approach to the future of food dominates the dialogue. Technological optimists argue that scientific advances are necessary to feed the world, but environmental purists believe that reductions in consumption and waste are sufficient and less risky. Life cycle assessment (LCA) helps resolve debates through quantitative analysis of environmental impacts from products which serve the same function. LCA used to compare dietary choices reveals that simple plant-based diets are better for the environment than diets that include animal products. However, analysis of soy protein isolate (SPI) demonstrates that certain plant-based proteins may be less preferable for the environment than some unprocessed meats in several categories due to additional impacts that come from industrial processing. LCAs' focus on production risks ignoring consumers, but the food system exists to serve consumers, who can be major drivers of change. Therefore, the path to a sustainable food system requires addressing consumption issues as well. Existing methods for advancing sustainable food systems that equate more information with better behavior or performance are insufficient to create change. Addressing food system issues requires sufficient tacit knowledge to understand how arguments are framed, what the supporting content is, the findings of primary sources, and complex and controversial dialogue surrounding innovations and interventions for food system sustainability. This level of expertise is called interactional competence and it is necessary to drive and maintain holistic progress towards sustainability. Development strategies for interactional competence are informed by studying the motivations and strategies utilized by vegans. A new methodology helps advance understanding of expertise development by assessing levels of expertise and reveals insights into how vegans maintain commitment to a principle that influences their daily lives. The study of veganism and expertise reveals that while providing information to debunk fallacies is important, the development of tacit knowledge is fundamental to advance to a stage of competence.
ContributorsBerardy, Andrew (Author) / Seager, Thomas P (Thesis advisor) / Hannah, Mark (Committee member) / Costello, Christine (Committee member) / Landis, Amy (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2015