Matching Items (4)
Filtering by

Clear all filters

152926-Thumbnail Image.png
Description
Teaching evolution has been shown to be a challenge for faculty, in both K-12 and postsecondary education. Many of these challenges stem from perceived conflicts not only between religion and evolution, but also faculty beliefs about religion, it's compatibility with evolutionary theory, and it's proper role in classroom curriculum. Studies

Teaching evolution has been shown to be a challenge for faculty, in both K-12 and postsecondary education. Many of these challenges stem from perceived conflicts not only between religion and evolution, but also faculty beliefs about religion, it's compatibility with evolutionary theory, and it's proper role in classroom curriculum. Studies suggest that if educators engage with students' religious beliefs and identity, this may help students have positive attitudes towards evolution. The aim of this study was to reveal attitudes and beliefs professors have about addressing religion and providing religious scientist role models to students when teaching evolution. 15 semi-structured interviews of tenured biology professors were conducted at a large Midwestern universiy regarding their beliefs, experiences, and strategies teaching evolution and particularly, their willingness to address religion in a class section on evolution. Following a qualitative analysis of transcripts, professors did not agree on whether or not it is their job to help students accept evolution (although the majority said it is not), nor did they agree on a definition of "acceptance of evolution". Professors are willing to engage in students' religious beliefs, if this would help their students accept evolution. Finally, professors perceived many challenges to engaging students' religious beliefs in a science classroom such as the appropriateness of the material for a science class, large class sizes, and time constraints. Given the results of this study, the author concludes that instructors must come to a consensus about their goals as biology educators as well as what "acceptance of evolution" means, before they can realistically apply the engagement of student's religious beliefs and identity as an educational strategy.
ContributorsBarnes, Maryann Elizabeth (Author) / Brownell, Sara E (Thesis advisor) / Brem, Sarah K. (Thesis advisor) / Lynch, John M. (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2014
153477-Thumbnail Image.png
Description
Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act

Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act (IDEA), blind and visually impaired (BVI) students continue to academically fall below the level of their sighted peers in the areas of science and math. Although this deficit is created by many factors, this study focuses on the lack of adequate accessible image based materials. Traditional methods for creating accessible image materials for the vision impaired have included detailed verbal descriptions accompanying an image or conversion into a simplified tactile graphic. It is very common that no substitute materials will be provided to students within STEM courses because they are image rich disciplines and often include a large number images, diagrams and charts. Additionally, images that are translated into text or simplified into basic line drawings are frequently inadequate because they rely on the interpretations of resource personnel who do not have expertise in STEM. Within this study, a method to create a new type of tactile 3D image was developed using High Density Polyethylene (HDPE) and Computer Numeric Control (CNC) milling. These tactile image boards preserve high levels of detail when compared to the original print image. To determine the discernibility and effectiveness of tactile images, these customizable boards were tested in various

university classrooms as well as in participation studies which included BVI and sighted students. Results from these studies indicate that tactile images are discernable and were found to improve performance in lab exercises as much as 60% for those with visual impairment. Incorporating tactile HDPE 3D images into a classroom setting was shown to increase the interest, participation and performance of BVI students suggesting that this type of 3D tactile image should be incorporated into STEM classes to increase the participation of these students and improve the level of training they receive in science and math.
ContributorsGonzales, Ashleigh (Author) / Baluch, Debra P (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2015
161448-Thumbnail Image.png
Description
In the US, menstrual education, which provides key information about menstrual hygiene and health to both young girls and boys, historically lacks biologically accurate information about the menstrual cycle and perpetuates harmful perceptions about female reproductive health. When people are unable to differentiate between normal and abnormal menstrual bleeding, based

In the US, menstrual education, which provides key information about menstrual hygiene and health to both young girls and boys, historically lacks biologically accurate information about the menstrual cycle and perpetuates harmful perceptions about female reproductive health. When people are unable to differentiate between normal and abnormal menstrual bleeding, based on a lack of quality menstrual education, common gynecological conditions often remain underreported. This raises a question as to how girls’ menstrual education experiences influence the ways in which they perceive normal menstrual bleeding and seek treatment for common abnormalities, such as heavy, painful, or irregular menstrual bleeding. A mixed methods approach allowed evaluation of girls’ abilities to recognize abnormal menstrual bleeding. A literature review established relevant historical and social context on the prevalence and quality of menstrual education in the US. Then, five focus groups, each including five to eight college-aged women, totaling thirty-three participants, allowed for macro-level analysis of current challenges and gaps in knowledge related to menstruation. To better examine the relationship between menstrual education and reproductive health outcomes, twelve semi-structured, one-on-one interviews allowed micro-level analysis. Those interviews consisted of women diagnosed with endometriosis and polycystic ovary syndrome, common gynecological conditions that include abnormal menstrual bleeding. Developing a codebook of definitions and exemplars of significant text segments and applying it to the collected data revealed several themes. For example, mothers, friends, teachers, the Internet, and social media are among the most common sources of information about menstrual hygiene and health. Yet, women reported that those sources of information often echoed stigmatized ideas about menstruation, eliciting feelings of shame and fear. That poor quality of information was instrumental to women’s abilities to detect and report abnormal menstrual bleeding. Women desire and need biologically accurate information about reproductive health, including menstruation and ovulation, fertility, and methods of birth control as treatments for abnormal menstrual bleeding. Unfortunately, menstrual education often leaves girls ill-equipped to identify and seek treatment for common gynecological conditions. Those findings may influence current menstrual education, incorporating biological information and actively dismissing common misconceptions about menstruation that influence stigma.
ContributorsSantora, Emily Katherine (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin (Committee member) / Hurlbut, Ben (Committee member) / Arizona State University (Publisher)
Created2021
152910-Thumbnail Image.png
Description
The landscape of science education is changing. Scientific research and the academy are both becoming increasingly complex, competitive, interdisciplinary, and international. Many federal research agencies, scientific professional societies, and science educators seem to agree on the importance of strong ethics education to help young scientists navigate this increasingly craggy terrain.

The landscape of science education is changing. Scientific research and the academy are both becoming increasingly complex, competitive, interdisciplinary, and international. Many federal research agencies, scientific professional societies, and science educators seem to agree on the importance of strong ethics education to help young scientists navigate this increasingly craggy terrain. But, what actually should be done? When it comes to teaching ethics to future scientists, is the apparent current emphasis on basic responsible conduct of research (RCR) sufficient, or should moral theory also be taught in science ethics education? In this thesis I try engage this question by focusing on an existing, related debate on whether moral theory should be part of teaching professional ethics more generally. After delving into the respective approaches promoted by the three primary participants in this debate (C. E. Harris, Bernard Gert, and Michael Davis) I unpack their views in order to ascertain their practical application potential and relative benefits. I then take these findings and apply them to ethics education in science, paying particular attention to its purported learning objectives. In the end I conclude that the presentation of these objectives suggests that moral theory may well be required in order for these objectives of ethics education in science to be fully achieved.
ContributorsMilleson, Valerye Michelle (Author) / Robert, Jason (Thesis advisor) / Herkert, Joseph (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2014