Matching Items (773)
Filtering by

Clear all filters

Description
Ulaanbaatar, Mongolia is one of the world’s coldest capital cities with roughly 1.5 million residents. About fifty percent of the city’s residents are off the electrical grid and millions continue to live nomadic lifestyles, raising livestock for food. Problematically, residents often turn to raw coal - Mongolia’s largest export -

Ulaanbaatar, Mongolia is one of the world’s coldest capital cities with roughly 1.5 million residents. About fifty percent of the city’s residents are off the electrical grid and millions continue to live nomadic lifestyles, raising livestock for food. Problematically, residents often turn to raw coal - Mongolia’s largest export - as a means to cook food and stay warm. Project Koyash is a philanthropic engineering initiative that was founded in the Arizona State University Program Engineering Projects in Community Service (EPICS) to combat the air quality crisis plaguing the ger districts of Ulaanbaatar. Koyash has already deployed 13 fully functional and autonomous units consisting of a solar powered air filtration system in Ulaanbaatar. Koyash innovated a solution of solar panels, air filters, batteries, inverters, PCB Arduinos, and other necessary components for providing crucial humanitarian services. The team is working to send more units and develop a local supply chain for the systems. This thesis project explores the development of Koyash, assesses the human health implications of air pollution, and reflects on the entire process.
ContributorsYavari, Bryan (Author) / Hartwell, Leland (Thesis director) / Schoepf, Jared (Thesis director) / Diddle, Julianna (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2024-05
Description
The creation of this study was driven by my belief in the importance of transforming and reimagining human-nature relationships for sustainable futures and my interest in understanding the implementation of nature-based learning in schools. Through observations of children in an outdoor education setting, I sought to answer the following research

The creation of this study was driven by my belief in the importance of transforming and reimagining human-nature relationships for sustainable futures and my interest in understanding the implementation of nature-based learning in schools. Through observations of children in an outdoor education setting, I sought to answer the following research questions: “How do children that have engaged in nature-based learning view themselves in relation to nature?” and “What can be observed about children’s personal understandings of nature and their personal relationships with nature in their writing and drawings?” This study was implemented with participants in third grade outdoor education classes at a local charter school in South Phoenix using multiple participatory research methods. My findings add to an existing body of knowledge and research focused on understanding children’s relationships with nature and the impacts of nature-based learning. In the conclusion of this paper, I pose additional questions about conceptualizing children’s relationships with nature and exploring their nature connectedness through research, share reflections on my personal relationship with nature, and discuss how my observations support benefits of nature-based learning as argued by existing scholarship.
ContributorsSetka, Emma (Author) / Goebel, Janna (Thesis director) / Vanos, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / School of Public Affairs (Contributor) / School of Sustainability (Contributor) / Division of Teacher Preparation (Contributor)
Created2024-05
Description
This honors thesis report aims to propose a sustainable long-term solution for providing off-grid solar energy to rural communities that lack the necessary grid energy infrastructure. With this in mind, we aim to establish the framework and documentation for people to be able to build and maintain their own off-grid

This honors thesis report aims to propose a sustainable long-term solution for providing off-grid solar energy to rural communities that lack the necessary grid energy infrastructure. With this in mind, we aim to establish the framework and documentation for people to be able to build and maintain their own off-grid solar power systems. Due to recent pushes for clean energy both nationwide and statewide, the team will discuss the current renewable energy market and the incentives to justify the future growth potential of residential solar energy systems, which includes off-grid or remote solar. This discussion will include comparing pre-built solar systems currently offered for purchase against the proposed design outlined in this report. Notably, the outlined design has been made with an emphasis on system sustainability, low initial cost, reliability, ease of manufacturing/maintenance, and material selection. Lastly, the team will discuss the project’s approach to documentation with a user manual draft to ensure the system's long-term sustainability and troubleshooting. Although the efforts of this project have increased over time, this project remains active within the ASU EWB chapter, meaning that not all aspects described throughout this report are fully complete. The Native American community of Shonto, Arizona, will be used as an example to understand a rural community's needs for designing a solar panel system that provides sufficient energy for a single household. The project was completed in collaboration with Arizona State University’s Engineering Projects In Community Service (EPICS) program and Engineers Without Borders (EWB) chapter. Both these organizations aim to connect ASU students to the professional mentors and resources they need to design and implement low-cost, small-scale, easily replicated, and sustainable engineering projects.
ContributorsHaq, Emmen (Author) / Sosa, Jorge (Co-author) / Beltran, Salvador (Thesis director) / Pham, Brandon (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2024-05