Matching Items (17)
Filtering by

Clear all filters

149789-Thumbnail Image.png
Description
The greatest challenge facing humanity in the twenty-first century is our ability to reconcile the capacity of natural systems to support continued improvement in human welfare around the globe. Over the last decade, the scientific community has attempted to formulate research agendas in response to what they view as the

The greatest challenge facing humanity in the twenty-first century is our ability to reconcile the capacity of natural systems to support continued improvement in human welfare around the globe. Over the last decade, the scientific community has attempted to formulate research agendas in response to what they view as the problems of sustainability. Perhaps the most prominent and wide-ranging of these efforts has been sustainability science, an interdisciplinary, problem-driven field that seeks to address fundamental questions on human-environment interactions. This project examines how sustainability scientists grapple with and bound the deeply social, political and normative dimensions of both characterizing and pursuing sustainability. Based on in-depth interviews with leading researchers and a content analysis of the relevant literature, this project first addresses three core questions: (1) how sustainability scientists define and bound sustainability; (2) how and why various research agendas are being constructed to address these notions of sustainability; (3) and how scientists see their research contributing to societal efforts to move towards sustainability. Based on these results, the project explores the tensions between scientific efforts to study and inform sustainability and social action. It discusses the implications of transforming sustainability into the subject of scientific analysis with a focus on the power of science to constrain discourse and the institutional and epistemological contexts that link knowledge to societal outcomes. Following this analysis, sustainability science is repositioned, borrowing Herbert Simon's concept, as a "science of design." Sustainability science has thus far been too focused on understanding the "problem-space"--addressing fundamental questions about coupled human-natural systems. A new set objectives and design principles are proposed that would move the field toward a more solutions-oriented approach and the enrichment of public reasoning and deliberation. Four new research streams that would situate sustainability science as a science of design are then discussed: creating desirable futures, socio-technical change, sustainability values, and social learning. The results serve as a foundation for a sustainability science that is evaluated on its ability to frame sustainability problems and solutions in ways that make them amenable to democratic and pragmatic social action.
ContributorsMiller, Thaddeus R. (Author) / Minteer, Ben A (Thesis advisor) / Redman, Charles L. (Committee member) / Sarewitz, Daniel (Committee member) / Wiek, Arnim (Committee member) / Arizona State University (Publisher)
Created2011
152207-Thumbnail Image.png
Description
Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis,

Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis, where CO2 benefits occurring during use of the PV panels is found to exceed emissions generated during the PV manufacturing phase including materials extraction and manufacture of the PV panels prior to installation. However, this approach neglects to recognize that the environmental costs of CO2 release during manufacture are incurred early, while environmental benefits accrue later. Thus, where specific policy targets suggest meeting CO2 reduction targets established by a certain date, rapid PV deployment may have counter-intuitive, albeit temporary, undesired consequences. Thus, on a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood. This phenomenon is particularly acute when PV manufacture occurs in areas using CO2 intensive energy sources (e.g., coal), but deployment occurs in areas with less CO2 intensive electricity sources (e.g., hydro). This thesis builds a dynamic Cumulative Radiative Forcing (CRF) model to examine the inter-temporal warming impacts of PV deployments in three locations: California, Wyoming and Arizona. The model includes the following factors that impact CRF: PV deployment rate, choice of PV technology, pace of PV technology improvements, and CO2 intensity in the electricity mix at manufacturing and deployment locations. Wyoming and California show the highest and lowest CRF benefits as they have the most and least CO2 intensive grids, respectively. CRF payback times are longer than CO2 payback times in all cases. Thin film, CdTe PV technologies have the lowest manufacturing CO2 emissions and therefore the shortest CRF payback times. This model can inform policies intended to fulfill time-sensitive CO2 mitigation goals while minimizing short term radiative forcing.
ContributorsTriplican Ravikumar, Dwarakanath (Author) / Seager, Thomas P (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Chester, Mikhail V (Committee member) / Sinha, Parikhit (Committee member) / Arizona State University (Publisher)
Created2013
151973-Thumbnail Image.png
Description
Cities around the globe struggle with socio-economic disparities, resource inefficiency, environmental contamination, and quality-of-life challenges. Technological innovation, as one prominent approach to problem solving, promises to address these challenges; yet, introducing new technologies, such as nanotechnology, into society and cities has often resulted in negative consequences. Recent research has conceptually

Cities around the globe struggle with socio-economic disparities, resource inefficiency, environmental contamination, and quality-of-life challenges. Technological innovation, as one prominent approach to problem solving, promises to address these challenges; yet, introducing new technologies, such as nanotechnology, into society and cities has often resulted in negative consequences. Recent research has conceptually linked anticipatory governance and sustainability science: to understand the role of technology in complex problems our societies face; to anticipate negative consequences of technological innovation; and to promote long-term oriented and responsible governance of technologies. This dissertation advances this link conceptually and empirically, focusing on nanotechnology and urban sustainability challenges. The guiding question for this dissertation research is: How can nanotechnology be innovated and governed in responsible ways and with sustainable outcomes? The dissertation: analyzes the nanotechnology innovation process from an actor- and activities-oriented perspective (Chapter 2); assesses this innovation process from a comprehensive perspective on sustainable governance (Chapter 3); constructs a small set of future scenarios to consider future implications of different nanotechnology governance models (Chapter 4); and appraises the amenability of sustainability problems to nanotechnological interventions (Chapter 5). The four studies are based on data collected through literature review, document analysis, participant observation, interviews, workshops, and walking audits, as part of process analysis, scenario construction, and technology assessment. Research was conducted in collaboration with representatives from industry, government agencies, and civic organizations. The empirical parts of the four studies focus on Metropolitan Phoenix. Findings suggest that: predefined mandates and economic goals dominate the nanotechnology innovation process; normative responsibilities identified by risk governance, sustainability-oriented governance, and anticipatory governance are infrequently considered in the nanotechnology innovation process; different governance models will have major impacts on the role and effects of nanotechnology in cities in the future; and nanotechnologies, currently, do not effectively address the root causes of urban sustainability challenges and require complementary solution approaches. This dissertation contributes to the concepts of anticipatory governance and sustainability science on how to constructively guide nanotechnological innovation in order to harvest its positive potential and safeguard against negative consequences.
ContributorsFoley, Rider Williams (Author) / Wiek, Arnim (Thesis advisor) / Guston, David H. (Committee member) / Seager, Thomas P (Committee member) / Minteer, Ben A (Committee member) / Arizona State University (Publisher)
Created2013
151673-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the

Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the cases of emerging technologies, where data is unavailable and rapid technological advances outstrip environmental knowledge. Previous studies have demonstrated several shortcomings to existing practices, including the masking of environmental impacts, the difficulty of selecting appropriate weight sets for multi-stakeholder problems, and difficulties in exploration of variability and uncertainty. In particular, there is an acute need for decision-driven interpretation methods that can guide decision makers towards making balanced, environmentally sound decisions in instances of high uncertainty. We propose the first major methodological innovation in LCA since early establishment of LCA as the analytical perspective of choice in problems of environmental management. We propose to couple stochastic multi-criteria decision analytic tools with existing approaches to inventory building and characterization to create a robust approach to comparative technology assessment in the context of high uncertainty, rapid technological change, and evolving stakeholder values. Namely, this study introduces a novel method known as Stochastic Multi-attribute Analysis for Life Cycle Impact Assessment (SMAA-LCIA) that uses internal normalization by means of outranking and exploration of feasible weight spaces.
ContributorsPrado, Valentina (Author) / Seager, Thomas P (Thesis advisor) / Landis, Amy E. (Committee member) / Chester, Mikhail (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2013
187828-Thumbnail Image.png
Description
With less than seven years left to reach the ambitious targets of the United Nations' 2030 Sustainable Development Goals (SDGs), it is imperative to understand how the SDGs are operationalized in practice to support effective governance. One integrative approach, the water, energy, and food (WEF) nexus, has been proposed to

With less than seven years left to reach the ambitious targets of the United Nations' 2030 Sustainable Development Goals (SDGs), it is imperative to understand how the SDGs are operationalized in practice to support effective governance. One integrative approach, the water, energy, and food (WEF) nexus, has been proposed to facilitate SDGs planning and implementation by incorporating synergies, co-benefits, and trade-offs. In this dissertation, I conduct three interrelated WEF nexus studies using a sustainability lens to develop new approaches and identify actionable measures to support the SDGs. The first paper is a systematic literature review (2015 – 2022) to investigate the extent to which WEF nexus research has generated actionable knowledge to achieve the SDGs. The findings show that the WEF nexus literature explicitly considering the SDGs mainly focuses on governance and environmental protection, with fewer studies focusing on target populations and affordability. In the second paper, I reframed the water quality concerns using a nexus and systems thinking approach in a FEW nexus hotspot, the Rio Negro Basin (RNB) in Uruguay. While Uruguay is committed to the 2030 Agenda for Sustainable Development, sustainability challenges endure in managing synergies and trade-offs, resulting in strategy setbacks for the sustainable development of food, land, water, and oceans. Reframing the water quality problem facilitated the identification of potential alternative intervention points to support local problem-solving capacity. In the third paper, I conducted semi-structured interviews and examined the meeting transcripts of the RNB Commission to understand local perspectives about how the activities and initiatives taking place in the basin enhance or diminish the overall sustainability. Sustainability criteria for river basin planning and management were operationalized through qualitative appraisal questions. The case of the RNB illustrates the challenges of coordinating the national development agenda to local livelihood. This dissertation advances the WEF nexus and sustainability science literature by shedding light on the implications of the research trend to support the SDGs, as well as reframing and appraising a persistent water quality problem to support sustainable development.
ContributorsOjeda Matos, Glorynel (Author) / White, Dave D (Thesis advisor) / Brundiers, Katja (Committee member) / Garcia, Margaret (Committee member) / Arizona State University (Publisher)
Created2023
157239-Thumbnail Image.png
Description
As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few

As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few studies assess the unique role of waterway restorations to bridge anthropocentric and ecological concerns in urban environments. To address this gap, my study addressed if well-established sustainability principles are evoked during the nascent discourse of recently proposed urban waterway developments along over fifty miles of Arizona’s Salt River. In this study, a deductive content analysis is used to illuminate the emergence of sustainability principles, the framing of the redevelopment, and to illuminate macro-environmental discourses. Three sustainability principles dominated the discourse: civility and democratic governance; livelihood sufficiency and opportunity; and social-ecological system integrity. These three principles connected to three macro-discourses: economic rationalism; democratic pragmatism; and ecological modernity. These results hold implications for policy and theory and inform urban development processes for improvements to sustainability. As continued densification, in-fill and rapid urbanization continues in the 21st century, more cities are looking to reconstruct urban riverways. Therefore, the emergent sustainability discourse regarding potential revitalizations along Arizona’s Salt River is a manifestation of how waterways are perceived, valued, and essential to urban environments for anthropocentric and ecological needs.
ContributorsHorvath, Veronica (Author) / White, Dave D (Thesis advisor) / Mirumachi, Naho (Committee member) / Childers, Dan (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2019
153711-Thumbnail Image.png
Description
ABSTRACT

Understanding complex and adaptive socio-ecological systems (SES) to deal with our most challenging and overlapping problems such as global climate change, biodiversity loss, and rising consumption rates requires sustainability theory that is commensurate with these problems’ size and complexity. The received United Nations-based sustainability framework aims to achieve a balance

ABSTRACT

Understanding complex and adaptive socio-ecological systems (SES) to deal with our most challenging and overlapping problems such as global climate change, biodiversity loss, and rising consumption rates requires sustainability theory that is commensurate with these problems’ size and complexity. The received United Nations-based sustainability framework aims to achieve a balance among three pillars—economics, environment, and social equity—for today and for future generations. Yet, despite applying this sustainability framework for over a quarter of a century, the Earth is less sustainable, not more. Theoretical trade-offs between environmental conservation and economic growth have often reinforced business-as-usual practices and educational paradigms, and emphasized economic values over ecological limits.

How can the principles of foundational naturalists help clarify, enhance, and advance sustainability discourse? I propose that the principles of Henry David Thoreau (1817-1862), Aldo Leopold (1887-1948), Rachel Carson (1907-1964), and Edward O. Wilson (1927-), express a worldview that captures and integrates a range and depth of historical, normative, economic, ecological, scientific, and social values for a viable and applicable discourse of sustainability.

This analytical study relies on (i.) textual analysis and interpretation of four key naturalists and humanists, (ii.) analysis of secondary sources that illuminate their proto- ecological and sustainability principles, and (iii.) interviews with leading sustainability scholars. Because these thinkers integrate science and ethics, natural history and philosophy, ecology and society, and environmental and economic problems within a holistic worldview, I call them systems naturalists. Their transdisciplinary worldview of one holistic system, with economics subordinated to environmental limits, links important values from the natural sciences and the humanities. The writings and examples of systems naturalists provide more robust historical sustainability principles that can help solve our most challenging SES problems by synthesizing a broad range of knowledge in the sciences, social sciences, and the humanities to inform sustainability paradigm, practices, and pedagogy.
ContributorsThomas, Craig (Craig F.) (Author) / Minteer, Ben A (Thesis advisor) / Pijawka, David K (Committee member) / Hirt, Paul W (Committee member) / Boone, Christopher (Committee member) / Arizona State University (Publisher)
Created2015
154038-Thumbnail Image.png
Description
The complexity and interconnectedness of sustainability issues has led to the joining of disciplines. This effort has been primarily within the sciences with minimal attention given to the relationship between science and art. The exclusion of art is problematic since sustainability challenges are not only scientific and technical; they are

The complexity and interconnectedness of sustainability issues has led to the joining of disciplines. This effort has been primarily within the sciences with minimal attention given to the relationship between science and art. The exclusion of art is problematic since sustainability challenges are not only scientific and technical; they are also cultural, so the arts, as shapers of culture, are critical components that warrant representation. In addition to contributing to the production of culture, arts have also been credited as catalysts for scientific breakthroughs; thus it stands to reason that understanding art-science integration will benefit sustainability’s focus on use-inspired basic research. I focus on placing art and science on equal footing to enhance understanding of how individual artists-scientists and collaborative artist-scientist teams creatively address sustainability challenges. In other words, I address the question “What does it take to develop high functioning artists-scientists or artist-scientist collaborations?”

To answer this question, I used a multipronged approach to triangulate a richer understanding of what art-science synthesis offers sustainability and how it functions. First, I performed an historical analysis of a maladapted wilderness aesthetic and turned to the work Aldo Leopold – an exemplar of an artist-scientist – for a new sustainability aesthetic. Then, I engaged in an individual contemporary art practice, culminating in a gallery exhibit, which displayed ecologically-informed work from a three year study of my backyard. Finally, I conducted small group research of artist-scientist teams tasked with developing interpretive signage for the Tres Rios wetland site. For this final element, I collected survey, wearable sensor, and ethnographic data.

Through this composite research, I found that successful art-science practices require significant energy and time investment. Although art-science is most intensive in an individual practice where the person must become “fluent” in two disciplines, it is still challenging in a group setting where members must become “conversational” in each other’s work. However, successful art-science syntheses appear to result in improved communication skills, better problem articulation, more creative problem solving, and the questioning of personal and disciplinary mental models. Thus, the outcomes of such syntheses warrant the effort required at both the individual and collaborative level.
ContributorsCardenas, Edgar (Author) / Klett, Mark (Thesis advisor) / Minteer, Ben A (Thesis advisor) / Hackett, Edward J (Committee member) / Childers, Dan (Committee member) / Arizona State University (Publisher)
Created2015
155063-Thumbnail Image.png
Description
Photovoltaics (PV) is an environmentally promising technology to meet climate goals and transition away from greenhouse-gas (GHG) intensive sources of electricity. The dominant approach to improve the environmental gains from PV is increasing the module efficiency and, thereby, the renewable electricity generated during use. While increasing the use-phase environmental benefits,

Photovoltaics (PV) is an environmentally promising technology to meet climate goals and transition away from greenhouse-gas (GHG) intensive sources of electricity. The dominant approach to improve the environmental gains from PV is increasing the module efficiency and, thereby, the renewable electricity generated during use. While increasing the use-phase environmental benefits, this approach doesn’t address environmentally intensive PV manufacturing and recycling processes.

Lifecycle assessment (LCA), the preferred framework to identify and address environmental hotspots in PV manufacturing and recycling, doesn’t account for time-sensitive climate impact of PV manufacturing GHG emissions and underestimates the climate benefit of manufacturing improvements. Furthermore, LCA is inherently retrospective by relying on inventory data collected from commercial-scale processes that have matured over time and this approach cannot evaluate environmentally promising pilot-scale alternatives based on lab-scale data. Also, prospective-LCAs that rely on hotspot analysis to guide future environmental improvements, (1) don’t account for stake-holder inputs to guide environmental choices in a specific decision context, and (2) may fail in a comparative context where the mutual differences in the environmental impacts of the alternatives and not the environmental hotspots of a particular alternative determine the environmentally preferable alternative

This thesis addresses the aforementioned problematic aspects by (1)using the time-sensitive radiative-forcing metric to identify PV manufacturing improvements with the highest climate benefit, (2)identifying the environmental hotspots in the incumbent CdTe-PV recycling process, and (3)applying the anticipatory-LCA framework to identify the most environmentally favorable alternative to address the recycling hotspot and significant stakeholder inputs that can impact the choice of the preferred recycling alternative.

The results show that using low-carbon electricity is the most significant PV manufacturing improvement and is equivalent to increasing the mono-Si and multi-Si module efficiency from a baseline of 17% to 21.7% and 16% to 18.7%, respectively. The elimination of the ethylene-vinyl acetate encapsulant through mechanical and chemical processes is the most significant environmental hotspot for CdTe PV recycling. Thermal delamination is the most promising environmental alternative to address this hotspot. The most significant stake-holder input to influence the choice of the environmentally preferable recycling alternative is the weight assigned to the different environmental impact categories.
ContributorsTriplican Ravikumar, Dwarakanath (Author) / Seager, Thomas P (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Chester, Mikhail (Committee member) / Sinha, Parikhit (Committee member) / Tao, Meng (Committee member) / Arizona State University (Publisher)
Created2016
152491-Thumbnail Image.png
Description
Transformational sustainability science demands that stakeholders and researchers consider the needs and values of future generations in pursuit of solutions to sustainability problems. This dissertation research focuses on the real-world problem of unsustainable water governance in the Phoenix region of Central Arizona. A sustainability transition is the local water system

Transformational sustainability science demands that stakeholders and researchers consider the needs and values of future generations in pursuit of solutions to sustainability problems. This dissertation research focuses on the real-world problem of unsustainable water governance in the Phoenix region of Central Arizona. A sustainability transition is the local water system is necessary to overcome sustainability challenges and scenarios can be used to explore plausible and desirable futures to inform a transition, but this requires some methodological refinements. This dissertation refines scenario methodology to generate water governance scenarios for metropolitan Phoenix that: (i) feature enhanced stakeholder participation; (ii) incorporate normative values and preferences; (iii) focus on governance actors and their activities; and (iv) meet an expanded set of quality criteria. The first study in the dissertation analyzes and evaluates participatory climate change scenarios to provide recommendations for the construction and use of scenarios that advance climate adaptation and mitigation efforts. The second study proposes and tests a set of plausibility indications to substantiate or evaluate claims that scenarios and future projections could become reality, helping to establish the legitimacy of radically different or transformative scenarios among an extended peer community. The case study of water governance begins with the third study, which includes a current state analysis and sustainability appraisal of the Phoenix-area water system. This is followed by a fourth study which surveys Phoenix-area water decision-makers to better understand water-related preferences for use in scenario construction. The fifth and final study applies a multi-method approach to construct future scenarios of water governance in metropolitan Phoenix in 2030 using stakeholder preferences, among other normative frames, and testing systemic impacts with WaterSim 5.0, a dynamic simulation model of water in the region. The scenarios are boundary objects around which stakeholders can weigh tradeoffs, set priorities and reflect on impacts of water-related activities, broadening policy dialogues around water governance in central Arizona. Together the five studies advance transformational sustainability research by refining methods to engage stakeholders in crafting futures that define how individuals and institutions should operate in transformed and sustainable systems.
ContributorsKeeler, Lauren Withycombe (Author) / Wiek, Arnim (Thesis advisor) / White, Dave D (Committee member) / Lang, Daniel J (Committee member) / Arizona State University (Publisher)
Created2014