Matching Items (26)
Filtering by

Clear all filters

151830-Thumbnail Image.png
Description
The lack of substantive, multi-dimensional perspectives on civic space planning and design has undermined the potential role of these valuable social and ecological amenities in advancing urban sustainability goals. Responding to these deficiencies, this dissertation utilized mixed quantitative and qualitative methods and synthesized multiple social and natural science perspectives to

The lack of substantive, multi-dimensional perspectives on civic space planning and design has undermined the potential role of these valuable social and ecological amenities in advancing urban sustainability goals. Responding to these deficiencies, this dissertation utilized mixed quantitative and qualitative methods and synthesized multiple social and natural science perspectives to inform the development of progressive civic space planning and design, theory, and public policy aimed at improving the social, economic, and environmental health of cities. Using Phoenix, Arizona as a case study, the analysis was tailored to arid cities, yet the products and findings are flexible enough to be geographically customized to the social, environmental, built, and public policy goals of other urbanized regions. Organized into three articles, the first paper applies geospatial and statistical methods to analyze and classify urban parks in Phoenix based on multiple social, ecological, and built criteria, including landuse-land cover, `greenness,' and site amenities, as well as the socio- economic and built characteristics of park neighborhoods. The second article uses spatial empirical analysis to rezone the City of Phoenix following transect form-based code. The current park system was then assessed within this framework and recommendations are presented to inform the planning and design of civic spaces sensitive to their social and built context. The final paper culminates in the development of a planning tool and site design guidelines for civic space planning and design across the urban-to-natural gradient augmented with multiple ecosystem service considerations and tailored to desert cities.
ContributorsIbes, Dorothy (Author) / Talen, Emily (Thesis advisor) / Boone, Christopher (Committee member) / Crewe, Katherine (Committee member) / Arizona State University (Publisher)
Created2013
151996-Thumbnail Image.png
Description
Despite the arid climate of Maricopa County, Arizona, vector-borne diseases have presented significant health challenges to the residents and public health professionals of Maricopa County in the past, and will continue to do so in the foreseeable future. Currently, West Nile virus is the only mosquitoes-transmitted disease actively, and natively,

Despite the arid climate of Maricopa County, Arizona, vector-borne diseases have presented significant health challenges to the residents and public health professionals of Maricopa County in the past, and will continue to do so in the foreseeable future. Currently, West Nile virus is the only mosquitoes-transmitted disease actively, and natively, transmitted throughout the state of Arizona. In an effort to gain a more complete understanding of the transmission dynamics of West Nile virus this thesis examines human, vector, and environment interactions as they exist within Maricopa County. Through ethnographic and geographic information systems research methods this thesis identifies 1) the individual factors that influence residents' knowledge and behaviors regarding mosquitoes, 2) the individual and regional factors that influence residents' knowledge of mosquito ecology and the spatial distribution of local mosquito populations, and 3) the environmental, demographic, and socioeconomic factors that influence mosquito abundance within Maricopa County. By identifying the factors that influence human-vector and vector-environment interactions, the results of this thesis may influence current and future educational and mosquito control efforts throughout Maricopa County.
ContributorsKunzweiler, Colin (Author) / Boone, Christopher (Thesis advisor) / Wutich, Amber (Committee member) / Brewis-Slade, Alexandra (Committee member) / Arizona State University (Publisher)
Created2013
151323-Thumbnail Image.png
Description
This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical evidence when applied to GPB. First, a qualitative assessment of

This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical evidence when applied to GPB. First, a qualitative assessment of the Theory of Planned Behavior (TPB), Norm Activation Theory (NAT), and Value-Belief-Norm Theory (VBN) is conducted to evaluate a) how well the phenomenon and concepts in each theory match the characteristics of pro-environmental behavior and b) how well the assumptions made in each theory match common assumptions made in purchasing theory. Second, a quantitative assessment of these three theories is conducted in which r2 values and methodological parameters (e.g., sample size) are collected from a sample of 21 empirical studies on GPB to evaluate the accuracy and generalize-ability of empirical evidence. In the qualitative assessment, the results show each theory has its advantages and disadvantages. The results also provide a theoretically-grounded roadmap for modifying each theory to be more suitable for GPB research. In the quantitative assessment, the TPB outperforms the other two theories in every aspect taken into consideration. It proves to 1) create the most accurate models 2) be supported by the most generalize-able empirical evidence and 3) be the most attractive theory to empiricists. Although the TPB establishes itself as the best foundational theory for an empiricist to start from, it's clear that a more comprehensive model is needed to achieve consistent results and improve our understanding of GPB. NAT and the Theory of Interpersonal Behavior (TIB) offer pathways to extend the TPB. The TIB seems particularly apt for this endeavor, while VBN does not appear to have much to offer. Overall, the TPB has already proven to hold a relatively high predictive value. But with the state of ecosystem services continuing to decline on a global scale, it's important for models of GPB to become more accurate and reliable. Better models have the capacity to help marketing professionals, product developers, and policy makers develop strategies for encouraging consumers to buy green products.
ContributorsRedd, Thomas Christopher (Author) / Dooley, Kevin (Thesis advisor) / Basile, George (Committee member) / Darnall, Nicole (Committee member) / Arizona State University (Publisher)
Created2012
152299-Thumbnail Image.png
Description
Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health

Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health impacts in urban areas, where large numbers of vulnerable people reside and where local-scale urban heat island effects (UHI) retard and reduce nighttime cooling. This dissertation presents three empirical case studies that were conducted to advance our understanding of human vulnerability to heat in coupled human-natural systems. Using vulnerability theory as a framework, I analyzed how various social and environmental components of a system interact to exacerbate or mitigate heat impacts on human health, with the goal of contributing to the conceptualization of human vulnerability to heat. The studies: 1) compared the relationship between temperature and health outcomes in Chicago and Phoenix; 2) compared a map derived from a theoretical generic index of vulnerability to heat with a map derived from actual heat-related hospitalizations in Phoenix; and 3) used geospatial information on health data at two areal units to identify the hot spots for two heat health outcomes in Phoenix. The results show a 10-degree Celsius difference in the threshold temperatures at which heat-stress calls in Phoenix and Chicago are likely to increase drastically, and that Chicago is likely to be more sensitive to climate change than Phoenix. I also found that heat-vulnerability indices are sensitive to scale, measurement, and context, and that cities will need to incorporate place-based factors to increase the usefulness of vulnerability indices and mapping to decision making. Finally, I found that identification of geographical hot-spot of heat-related illness depends on the type of data used, scale of measurement, and normalization procedures. I recommend using multiple datasets and different approaches to spatial analysis to overcome this limitation and help decision makers develop effective intervention strategies.
ContributorsChuang, Wen-Ching (Author) / Gober, Patricia (Thesis advisor) / Boone, Christopher (Committee member) / Guhathakurta, Subhrajit (Committee member) / Ruddell, Darren (Committee member) / Arizona State University (Publisher)
Created2013
152810-Thumbnail Image.png
Description
Industrial activities have damaged the natural environment at an unprecedented scale. A number of approaches to environmentally responsible design and sustainability have been developed that are aimed at minimizing negative impacts derived from products on the environment. Environmental assessment methods exist as well to measure these impacts. Major environmentally responsible

Industrial activities have damaged the natural environment at an unprecedented scale. A number of approaches to environmentally responsible design and sustainability have been developed that are aimed at minimizing negative impacts derived from products on the environment. Environmental assessment methods exist as well to measure these impacts. Major environmentally responsible approaches to design and sustainability were analyzed using content analysis techniques. The results show several recommendations to minimize product impacts through design, and dimensions to which they belong. Two products made by a manufacturing firm with exceptional commitment to environmental responsibility were studied to understand how design approaches and assessment methods were used in their development. The results showed that the company used several strategies for environmentally responsible design as well as assessment methods in product and process machine design, both of which resulted in reduced environmental impacts of their products. Factors that contributed positively to reduce impacts are the use of measurement systems alongside environmentally responsible design, as well as inspiring innovations by observing how natural systems work. From a managerial perspective, positive influencing factors included a commitment to environmental responsibility from the executive level of the company and a clear vision about sustainability that has been instilled from the top through every level of employees. Additionally, a high degree of collaboration between the company and its suppliers and customers was instrumental in making the success possible.
ContributorsHuerta Gajardo, Oscar André (Author) / Giard, Jacques (Thesis advisor) / White, Philip (Committee member) / Dooley, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
152925-Thumbnail Image.png
Description
Currently, consumers throw away products every day, turning those materials into waste. Electronic waste poses special problems when it is not recycled because it may contain toxic components that can leach into landfill surroundings and reach groundwater sources or contaminate soil, and its plastic, metal, and electronic materials do not

Currently, consumers throw away products every day, turning those materials into waste. Electronic waste poses special problems when it is not recycled because it may contain toxic components that can leach into landfill surroundings and reach groundwater sources or contaminate soil, and its plastic, metal, and electronic materials do not biodegrade and are lost rather than recycled. This study analyzes a system that attempts to solve the electronic post-consumer-waste problem by shifting the economic burden of disposal from local municipalities to producers, reducing its environmental impacts while promoting economic development. The system was created in British Columbia, Canada after the province enacted a recycling regulation based on Extended Producer Responsibility (EPR), a policy strategy that is fast growing globally. The BC recycling regulation requires all e-toy corporations in BC to comply with a government-approved product-stewardship program to recover and dispose of e-toys after they have been discarded by consumers. In response to the regulation, e-toy corporations joined a Canadian non-profit entity that recycles regulated waste. I conducted a case study using in-depth interviews with the stakeholders to identify the outcomes of this program and its potential for replication in other industries. I derived lessons from which corporations can learn to implement stewardship programs based on EPR regulations. The e-toy program demonstrated that creating exclusive programs is neither efficient nor economically feasible. Corporations should expect low recycling rates in the first phases of the program implementation because EPR regulations are long-term strategies. In order to reach any conclusions about the demand of consumers for recycling programs, we need to measure the program's return rates during at least three years. I also derived lessons that apply to the expansion of EPR regulations to a broader scope of product categories. The optimal way to expand EPR policy is to do it by gradually adding new product categories to the regulation on a long-term schedule. By doing so, new categories can take advantage of existing stewardship programs and their infrastructure to recover and recycle the post-consumer products. EPR proved to be an effective option to make corporations start thinking about the end of life of their products.
ContributorsNemer Soto, Andrea (Author) / Dooley, Kevin (Thesis advisor) / Basile, George (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2014
152930-Thumbnail Image.png
Description
Diarrheal diseases caused by poor water, sanitation and hygiene continue to kill more children in Sub-Saharan Africa's burgeoning informal urban settlements than in any other part of the world. In recent years, Delegated Management Model (DMM), a partnership in which a utility delegates service management to slum residents have been

Diarrheal diseases caused by poor water, sanitation and hygiene continue to kill more children in Sub-Saharan Africa's burgeoning informal urban settlements than in any other part of the world. In recent years, Delegated Management Model (DMM), a partnership in which a utility delegates service management to slum residents have been promoted as new models to improve services.

This dissertation examines the benefits of DMM by comparing water services in three informal settlements in Kisumu city, Kenya: two slums where DMM has been implemented, and one, a control, where it has not. In addition, the research examined how school-based hygiene interventions could be designed to improve safe water and hygiene knowledge in urban informal settlements. This study compared outcomes of two approaches to hygiene education, one which combined messages with participatory water testing; the second used hygiene messages alone.

Results of the DMM study showed that DMM implementation had lowered water cost and improved provider accountability. However, unhygienic water collection and handling practices on the part of the service users could contaminate drinking water that was clean at the delivery point, thus preventing the intended health outcomes of DMM from being realized. Results of the hygiene education intervention showed that one week after the inventions, hygiene knowledge among students who received the intervention that combined hygiene messages with participatory water testing was significantly improved. Evaluation of the intervention 12 months after implementation showed that the hygiene knowledge gained was sustained.

The research findings suggest that: i) regular monitoring of water quality at the kiosks is essential to ensure that the DMM model achieves intended health outcomes, ii) sanitation conditions at kiosk sites need to be regulated to meet minimum hygiene standards, and iii) customers need to be educated on safe water collection and storage practices. Finally, school-based hygiene education could be made more effective by including hands-on water testing by students. Making sustainable impact on health and wellbeing of slum residents requires not only building effective partnerships for water delivery, but also paying close attention to the other points of intervention within the water system.
ContributorsNzengya, Daniel (Author) / Aggarwal, Rimjhim (Thesis advisor) / Hartwell, Leland (Committee member) / Boone, Christopher (Committee member) / Arizona State University (Publisher)
Created2014
152838-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) is used in the chemical process sector to compare the environmental merits of different product or process alternatives. One of the tasks that involves much time and cost in LCA studies is the specification of the exact materials and processes modeled which has limited its widespread

Life Cycle Assessment (LCA) is used in the chemical process sector to compare the environmental merits of different product or process alternatives. One of the tasks that involves much time and cost in LCA studies is the specification of the exact materials and processes modeled which has limited its widespread application. To overcome this, researchers have recently created probabilistic underspecification as an LCA streamlining method, which uses a structured data classification system to enable an LCA modeler to specify materials and processes in a less precise manner. This study presents a statistical procedure to understand when streamlined LCA methods can be used, and what their impact on overall model uncertainty is. Petrochemicals and polymer product systems were chosen to examine the impacts of underspecification and mis-specification applied to LCA modeling. Ecoinvent database, extracted using GaBi software, was used for data pertaining to generic crude oil refining and polymer manufacturing modules. By assessing the variation in LCA results arising out of streamlined materials classification, the developed statistics estimate the amount of overall error incurred by underspecifying and mis-specifying material impact data in streamlined LCA. To test the impact of underspecification and mis-specification at the level of a product footprint, case studies of HDPE containers and aerosol air fresheners were conducted. Results indicate that the variation in LCA results decreases as the specificity of materials increases. For the product systems examined, results show that most of the variability in impact assessment is due to the differences in the regions from which the environmental impact datasets were collected; the lower levels of categorization of materials have relatively smaller influence on the variance. Analyses further signify that only certain environmental impact categories viz. global warming potential, freshwater eutrophication, freshwater ecotoxicity, human toxicity and terrestrial ecotoxicity are affected by geographic variations. Outcomes for the case studies point out that the error in the estimation of global warming potential increases as the specificity of a component of the product decreases. Fossil depletion impact estimates remain relatively robust to underspecification. Further, the results of LCA are much more sensitive to underspecification of materials and processes than mis-specification.
ContributorsMurali, Ashwin Krishna (Author) / Dooley, Kevin (Thesis advisor) / Dai, Lenore (Thesis advisor) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014
Description
An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs,

An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs, when compared with standard industrial resource sharing networks, prove to be of greater public advantage as they offer improved environmental and economic benefits, and higher operational efficiencies both upstream and downstream in their supply chain.

Although there have been many attempts to adapt EIP methodology to existing industrial sharing networks, most of them have failed for various factors: geographic restrictions by governmental organizations on use of technology, cost of technology, the inability of industries to effectively communicate their upstream and downstream resource usage, and to diminishing natural resources such as water, land and non-renewable energy (NRE) sources for energy production.

This paper presents a feasibility study conducted to evaluate the comparative environmental, economic, and geographic impacts arising from the use of renewable energy (RE) and NRE to power EIPs. Life Cycle Assessment (LCA) methodology, which is used in a variety of sectors to evaluate the environmental merits and demerits of different kinds of products and processes, was employed for comparison between these two energy production methods based on factors such as greenhouse gas emission, acidification potential, eutrophication potential, human toxicity potential, fresh water usage and land usage. To complement the environmental LCA analysis, levelized cost of electricity was used to evaluate the economic impact. This model was analyzed for two different geographic locations; United States and Europe, for 12 different energy production technologies.

The outcome of this study points out the environmental, economic and geographic superiority of one energy source over the other, including the total carbon dioxide equivalent emissions, which can then be related to the total number of carbon credits that can be earned or used to mitigate the overall carbon emission and move closer towards a net zero carbon footprint goal thus making the EIPs truly sustainable.
ContributorsGupta, Vaibhav (Author) / Calhoun, Ronald J (Thesis advisor) / Dooley, Kevin (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2014
153197-Thumbnail Image.png
Description
The production of nanomaterials has been increasing and so are their applications in various products, while the environmental impacts and human impacts of these nanomaterials are still in the process of being explored. In this thesis, a process for

producing nano-titanium dioxide (nano-TiO2) is studied and a case-study has been

The production of nanomaterials has been increasing and so are their applications in various products, while the environmental impacts and human impacts of these nanomaterials are still in the process of being explored. In this thesis, a process for

producing nano-titanium dioxide (nano-TiO2) is studied and a case-study has been conducted on comparative Life Cycle Assessment (LCA) of the application of these nano-TiO2 particles in the sunscreen lotion as a UV-blocker with the conventional organic chemical sunscreen lotion using GaBi software. Nano-TiO2 particles were identified in the sunscreen lotion using Transmission Electron Microscope suggesting the use of these particles in the lotion.

The LCA modeling includes the comparison of the environmental impacts of producing nano-TiO2 particles with that of conventional organic chemical UV-blockers (octocrylene and avobenzone). It also compares the environmental life cycle impacts of the two sunscreen lotions studied. TRACI 2.1 was used for the assessment of the impacts which were then normalized and weighted for the ranking of the impact categories.

Results indicate that nano-TiO2 had higher impacts on the environment than the conventional organic chemical UV-blockers (octocrylene and avobenzone). For the two sunscreen lotions studied, nano-TiO2 sunscreen variant had lower environmental life cycle impacts than its counterpart because of the other chemicals used in the formulation. In the organic chemical sunscreen variant the major impacts came from production of glycerine, ethanol, and avobenzone but in the nano-TiO2 sunscreen variant the major impacts came from the production of nano-TiO2 particles.

Analysis further signifies the trade-offs between few environmental impact categories, for example, the human toxicity impacts were more in the nano-TiO2 sunscreen variant, but the other environmental impact categories viz. fossil fuel depletion, global warming potential, eutrophication were less compared to the organic chemical sunscreen variant.
ContributorsThakur, Ankita (Author) / Dooley, Kevin (Thesis advisor) / Dai, Lenore (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2014