Matching Items (5)
Filtering by

Clear all filters

141447-Thumbnail Image.png
Description

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53 cooling centers were evaluated to assess facility and visitor characteristics. Maricopa County staff collected data by directly observing daily operations and by surveying managers and visitors. The cooling centers in Maricopa County were often housed within community, senior, or religious centers, which offered various services for at least 1500 individuals daily. Many visitors were unemployed and/or homeless. Many learned about a cooling center by word of mouth or by having seen the cooling center’s location. The cooling centers provide a valuable service and reach some of the region’s most vulnerable populations. This project is among the first to systematically evaluate cooling centers from a public health perspective and provides helpful insight to community leaders who are implementing or improving their own network of cooling centers.

ContributorsBerisha, Vjollca (Author) / Hondula, David M. (Author) / Roach, Matthew (Author) / White, Jessica R. (Author) / McKinney, Benita (Author) / Bentz, Darcie (Author) / Mohamed, Ahmed (Author) / Uebelherr, Joshua (Author) / Goodin, Kate (Author)
Created2016-09-23
141370-Thumbnail Image.png
Description

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? Research demonstrates that vulnerability is

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? Research demonstrates that vulnerability is registered not by exposure to hazards (perturbations and stresses) alone but also resides in the sensitivity and resilience of the system experiencing such hazards. This recognition requires revisions and enlargements in the basic design of vulnerability assessments, including the capacity to treat coupled human–environment systems and those linkages within and without the systems that affect their vulnerability. A vulnerability framework for the assessment of coupled human–environment systems is presented.

Research on global environmental change has significantly improved our understanding of the structure and function of the biosphere and the human impress on both (1). The emergence of “sustainability science” (2–4) builds toward an understanding of the human–environment condition with the dual objectives of meeting the needs of society while sustaining the life support systems of the planet. These objectives, in turn, require improved dialogue between science and decision making (5–8). The vulnerability of coupled human–environment systems is one of the central elements of this dialogue and sustainability research (6, 9–11). It directs attention to such questions as: Who and what are vulnerable to the multiple environmental and human changes underway, and where? How are these changes and their consequences attenuated or amplified by different human and environmental conditions? What can be done to reduce vulnerability to change? How may more resilient and adaptive communities and societies be built?

Answers to these and related questions require conceptual frameworks that account for the vulnerability of coupled human–environment systems with diverse and complex linkages. Various expert communities have made considerable progress in pointing the way toward the design of these frameworks (10, 11). These advances are briefly reviewed here and, drawing on them, we present a conceptual framework of vulnerability developed by the Research and Assessment Systems for Sustainability Program (http://sust.harvard.edu) that produced the set of works in this Special Feature of PNAS. The framework aims to make vulnerability analysis consistent with the concerns of sustainability and global environmental change science. The case study by Turner et al. (12) in this issue of PNAS illustrates how the framework informs vulnerability assessments.

ContributorsTurner II, B. L. (Author) / Kasperson, Roger E. (Author) / Matson, Pamela A. (Author) / McCarthy, James J. (Author) / Corell, Robert W. (Author) / Christensen, Lindsey (Author) / Eckley, Noelle (Author) / Kasperson, Jeanne X. (Author) / Luers, Amy (Author) / Martello, Marybeth L. (Author) / Polsky, Colin (Author) / Pulsipher, Alexander (Author) / Schiller, Andrew (Author)
Created2003-03-07
141383-Thumbnail Image.png
Description

Transitions towards sustainability are urgently needed to address the interconnected challenges of economic development, ecological integrity, and social justice, from local to global scales. Around the world, collaborative science-society initiatives are forming to conduct experiments in support of sustainability transitions. Such experiments, if carefully designed, provide significant learning opportunities for

Transitions towards sustainability are urgently needed to address the interconnected challenges of economic development, ecological integrity, and social justice, from local to global scales. Around the world, collaborative science-society initiatives are forming to conduct experiments in support of sustainability transitions. Such experiments, if carefully designed, provide significant learning opportunities for making progress on transition efforts. Yet, there is no broadly applicable evaluative scheme available to capture this critical information across a large number of cases, and to guide the design of transition experiments. To address this gap, the article develops such a scheme, in a tentative form, drawing on evaluative research and sustainability transitions scholarship, alongside insights from empirical cases. We critically discuss the scheme's key features of being generic, comprehensive, operational, and formative. Furthermore, we invite scholars and practitioners to apply, reflect and further develop the proposed tentative scheme – making evaluation and experiments objects of learning.

ContributorsLuederitz, Christopher (Author) / Schäpke, Niko (Author) / Wiek, Arnim (Author) / Lang, Daniel J. (Author) / Bergmann, Matthias (Author) / Bos, Joannette J (Author) / Burch, Sarah (Author) / Davies, Anna (Author) / Evans, James (Author) / König, Ariane (Author) / Farrelly, Megan A. (Author) / Forrest, Nigel (Author) / Frantzeskaki, Niki (Author) / Gibson, Robert B. (Author) / Kay, Braden (Author) / Loorbach, Derk (Author) / McCormick, Kes (Author) / Parodi, Oliver (Author) / Rauschmayer, Felix (Author) / Schneidewind, Uwe (Author) / Stauffacher, Michael (Author) / Stelzer, Franziska (Author) / Trencher, Gregory (Author) / Venjakob, Johannes (Author) / Vergragt, Philip J. (Author) / von Wehrden, Henrik (Author) / Westley, Frances R. (Author)
Created2016-09-03
141388-Thumbnail Image.png
Description

In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages

In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages <65 and ≥65 during the months May–October for years 2000–2008. The most robust relationship was between ATmax on day of death and mortality from direct exposure to high environmental heat. For this condition-specific cause of death, the heat thresholds in all gender and age groups (ATmax = 90–97 °F; 32.2‒36.1 °C) were below local median seasonal temperatures in the study period (ATmax = 99.5 °F; 37.5 °C). Heat threshold was defined as ATmax at which the mortality ratio begins an exponential upward trend. Thresholds were identified in younger and older females for cardiac disease/stroke mortality (ATmax = 106 and 108 °F; 41.1 and 42.2 °C) with a one-day lag. Thresholds were also identified for mortality from respiratory diseases in older people (ATmax = 109 °F; 42.8 °C) and for all-cause mortality in females (ATmax = 107 °F; 41.7 °C) and males <65 years (ATmax = 102 °F; 38.9 °C). Heat-related mortality in a region that has already made some adaptations to predictable periods of extremely high temperatures suggests that more extensive and targeted heat-adaptation plans for climate change are needed in cities worldwide.

ContributorsHarlan, Sharon L. (Author) / Chowell, Gerardo (Author) / Yang, Shuo (Author) / Petitti, Diana B. (Author) / Morales Butler, Emmanuel J. (Author) / Ruddell, Benjamin L. (Author) / Ruddell, Darren M. (Author)
Created2014-05-20
141394-Thumbnail Image.png
Description

Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1–2 °C not just at the scale of individual cities

Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1–2 °C not just at the scale of individual cities but over large regional swaths of the country. This warming is a significant fraction of the 21st century greenhouse gas-induced climate change simulated by global climate models. Using a suite of regional climate simulations, we assessed the efficacy of commonly proposed urban adaptation strategies, such as green, cool roof, and hybrid approaches, to ameliorate the warming. Our results quantify how judicious choices in urban planning and design cannot only counteract the climatological impacts of the urban expansion itself but also, can, in fact, even offset a significant percentage of future greenhouse warming over large scales. Our results also reveal tradeoffs among different adaptation options for some regions, showing the need for geographically appropriate strategies rather than one size fits all solutions.

ContributorsGeorgescu, Matei (Author) / Morefield, Philip E. (Author) / Bierwagen, Britta G. (Author) / Weaver, Christopher P. (Author)
Created2014-02-25