Matching Items (10)
Filtering by

Clear all filters

136656-Thumbnail Image.png
Description
The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing

The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing shelter and spaces for cooking, sleeping, eating, and sanitation. The project proved to be very challenging from the start. First, the livable space is extremely small, being only tall enough for one to sit up straight. The truck and camper shell were both borrowed items, so no modifications were allowed for either, e.g. drilling holes for mounting. The idea was to create a system that could be easily removed, transforming it from a camper to a utility truck. The systems developed for the living environment would be modular and transformative so to accommodate for different necessities when packing. The goal was to create a low-water system with sustainability in mind. Insulating the space was the largest challenge and the most rewarding, using body heat to warm the space and insulate from the elements. Comfort systems were made of high density foam cushions in sections to allow folding and stacking for different functions (sleeping, lounging, and sitting). Sanitation is necessary for healthy living and regular human function. A composting toilet was used for the design, lending to low-water usage and is sustainable over time. Saw dust would be necessary for its function, but upon composting, the unit will generate sufficient amounts of heat to act as a space heater. Showering serves the functions of exfoliation and ridding of bacteria, both of which bath wipes can accomplish, limiting massive volumes of water storage and waste. Storage systems were also designed for modularity. Hooks were installed the length of the bed for hanging or securing items as necessary. Some are available for hanging bags. A cabinetry rail also runs the length of the bed to allow movement of hard storage to accommodate different scenarios. The cooking method is called "sous-vide", a method of cooking food in air-tight bags submerged in hot water. The water is reusable for cooking and no dishes are necessary for serving. Overall, the prototype fulfilled its function as a full living environment with few improvements necessary for future use.
ContributorsLimsirichai, Pimwadee (Author) / Foy, Joseph (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-12
136885-Thumbnail Image.png
Description
Lithium-ion batteries are one of the most widely used energy storage solutions today. As renewable energy sources proliferate to meet growth in worldwide energy consumption, it is important that lithium-ion batteries be improved to help capture this energy for use when the demand arises. One way to boost the performance

Lithium-ion batteries are one of the most widely used energy storage solutions today. As renewable energy sources proliferate to meet growth in worldwide energy consumption, it is important that lithium-ion batteries be improved to help capture this energy for use when the demand arises. One way to boost the performance of lithium-ion batteries is to replace the electrode active materials with materials of higher specific capacity. Silicon is one material that has been widely touted as a potential replacement for the graphite used in commercial anodes with a theoretical capacity of 3500 mAh/g as opposed to graphite's 372 mAh/g. However, bulk silicon is known to pulverize after experiencing large strains during lithiation. Here, silicon clathrates are investigated as a potential structure for accommodation of these strains. Silicon clathrates consist of covalently bonded silicon host cages surrounding a guest alkali or alkaline earth metal ion. Previous work has looked at silicon clathrates for their superconducting and thermoelectric properties. In this study, electrochemical properties of type I and II silicon clathrates with sodium guest ions (NaxSi46 and NaxSi136) and type I silicon clathrates with copper framework substitution and barium guest ions (Ba8CuxSi46-x) are examined. Sodium clathrates showed very high capacities during initial lithiation (>2500 mAh/g), but rapidly lost capacity thereafter. X-ray diffraction after lithiation showed conversion of the clathrate phase to lithium silicide and then to amorphous silicon after delithiation, indicating destruction of the clathrate structure as a possible explanation for the rapid capacity fade. Ba8CuxSi46-x clathrates were found to have their structures completely intact after 50 cycles. However, they had very low reversible capacities (<100 mAh/g) and potentially might not be electrochemically active. Further work is needed to better understand exactly how lithium is inserted into clathrates and if copper impurities detected during wavelength-dispersive X-ray spectroscopy could be inhibiting lithium transport into the clathrates.
ContributorsWagner, Nicholas Adam (Author) / Chan, Candace (Thesis director) / Sieradzki, Karl (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2014-05
134663-Thumbnail Image.png
Description
Solid-state lithium-ion batteries are a major area of research due to their increased safety characteristics over conventional liquid electrolyte batteries. Lithium lanthanum zirconate (LLZO) is a promising garnet-type ceramic for use as a solid-state electrolyte due to its high ionic conductivity. The material exists in two dierent phases, one that

Solid-state lithium-ion batteries are a major area of research due to their increased safety characteristics over conventional liquid electrolyte batteries. Lithium lanthanum zirconate (LLZO) is a promising garnet-type ceramic for use as a solid-state electrolyte due to its high ionic conductivity. The material exists in two dierent phases, one that is cubic in structure and one that is tetragonal. One potential synthesis method that results in LLZO in the more useful, cubic phase, is electrospinning, where a mat of nanowires is spun and then calcined into LLZO. A phase containing lanthanum zirconate (LZO) and amorphous lithium occursas an intermediate during the calcination process. LZO has been shown to be a sintering aid for LLZO, allowing for lower sintering temperatures. Here it is shown the eects of internal LZO on the sintered pellets. This is done by varying the 700C calcination time to transform diering amounts of LZO and LLZO in electrospun nanowires, and then using the same sintering parameters for each sample. X-ray diraction was used to get structural and compositional analysis of both the calcined powders and sintered pellets. Pellets formed from wires calcined at 1 hour or longer contained only LLZO even if the calcined powder had only undergone the rst phase transformation. The relative density of the pellet with no initial LLZO of 61.0% was higher than that of the pellet with no LZO, which had a relative density of 57.7%. This allows for the same, or slightly higher, quality material to be synthesized with a shorter amount of processing time.
ContributorsLondon, Nathan Harry (Author) / Chan, Candace (Thesis director) / Tongay, Sefaattin (Committee member) / Department of Physics (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132906-Thumbnail Image.png
Description
Plastics make up a large proportion of solid waste that ends up in landfills and pollute ecosystems, and do not readily decompose. Composites from fungus mycelium are a recent and promising alternative to replace plastics. Mycelium is the root-like fibers from fungi that grow underground. When fed with woody biomass,

Plastics make up a large proportion of solid waste that ends up in landfills and pollute ecosystems, and do not readily decompose. Composites from fungus mycelium are a recent and promising alternative to replace plastics. Mycelium is the root-like fibers from fungi that grow underground. When fed with woody biomass, the mycelium becomes a dense mass. From there, the mycelium is placed in mold to take its shape and grow. Once the growth process is done, the mycelium is baked to end the growth, thus making a mycelium brick. The woody biomass fed into the mycelium can include materials such as sawdust and pistachio shells, which are all cheap feedstock. In comparison to plastics, mycelium bricks are mostly biodegradable and eco-friendly. Mycelium bricks are resistant to water, fire, and mold and are also lightweight, sustainable, and affordable. Mycelium based materials are a viable option to replace less eco-friendly materials. This project aims to explore growth factors of mycelium and incorporate nanomaterials into mycelium bricks to achieve strong and sustainable materials, specifically for packaging materials. The purpose of integrating nanomaterials into mycelium bricks is to add further functionality such as conductivity, and to enhance properties such as mechanical strength.
ContributorsWong, Cindy (Author) / Wang, Qing Hua (Thesis director) / Green, Alexander (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
148173-Thumbnail Image.png
Description

There is surprisingly little scientific literature describing whether a hockey slap shot positively or negatively transfers to a driving golf swing. Golf and hockey use a similar kinematic sequence to send the ball / puck towards a target, but does that directly translate to positive skill transfer between the two

There is surprisingly little scientific literature describing whether a hockey slap shot positively or negatively transfers to a driving golf swing. Golf and hockey use a similar kinematic sequence to send the ball / puck towards a target, but does that directly translate to positive skill transfer between the two sports, or are there other important factors that could result in a negative skill transfer? The aim of this study is to look further into the two kinematic sequences and determine their intertask skill transfer type. A field experiment was conducted, following a specific research design, in order to compare performance between two groups, one being familiar with the skill that may transfer (hockey slapshot) and the other group being unfamiliar. Both groups had no experience in the skill being tested (driving golf swing) and various data was collected as all of the subjects performed 10 golf swings. The results of the data analysis showed that the group with experience in hockey had a higher variability of ball distance and ball speed. There are many factors of a hockey slapshot that are likely to develop a negative intertask skill transfer, resulting in this group's high inconsistency when performing a golf swing. On the other hand, the group with hockey experience also had higher mean club speed, showing that some aspects of the hockey slapshot resulted in a positive skill transfer, aiding their ability to perform a golf swing.

ContributorsLarson, Finn Althea (Author) / Peterson, Daniel (Thesis director) / Cryer, Michael (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The environment today is facing concerns over accumulation of plastics in landfills as well as excessive CO2 emissions. Containers and packaging take up approximately 15 million tons each year, and accumulations such as the Great Pacific Garbage Patch are entering the oceans. Work has been done to alter and treat

The environment today is facing concerns over accumulation of plastics in landfills as well as excessive CO2 emissions. Containers and packaging take up approximately 15 million tons each year, and accumulations such as the Great Pacific Garbage Patch are entering the oceans. Work has been done to alter and treat polyethylene plastic to be added to cement mixtures. This is done to increase bearing capacity and ductility of concrete in addition to decreasing carbon emissions and plastic waste.

ContributorsWestersund, Susanna (Author) / Hoover, Christian (Thesis director) / Soman, Silpa (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2023-05
Description

Protein and gene circuit level synthetic bioengineering can require years to develop a single target. Phage assisted continuous evolution (PACE) is a powerful new tool for rapidly engineering new genes and proteins, but the method requires an automated cell culture system, making it inaccessible to non industrial research programs. Complex

Protein and gene circuit level synthetic bioengineering can require years to develop a single target. Phage assisted continuous evolution (PACE) is a powerful new tool for rapidly engineering new genes and proteins, but the method requires an automated cell culture system, making it inaccessible to non industrial research programs. Complex protein functions, like specific binding, require similarly dynamic PACE selection that can be alternatively induced or suppressed, with heat labile chemicals like tetracycline. Selection conditions must be controlled continuously over days, with adjustments made every few minutes. To make PACE experiments accessible to the broader community, we designed dedicated cell culture hardware and integrated optogenetically controlled plasmids. The low cost and open source platform allows a user to conduct PACE with continuous monitoring and precise control of evolution using light.

ContributorsTse, Ashley (Author) / Bartelle, Benjamin (Thesis director) / Tian, Xiaojun (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
132513-Thumbnail Image.png
Description
In this research, the effect of the crystal structure of the parent phase on the morphology of nanoporous gold is explored. Specifically, Cu-Au alloys are studied. For this experiment, Cu0.75Au0.25 is heat treated to achieve an ordered phase Cu3Au and a disordered random solid solution, face centered cubic, Cu0.75Au0.25 phase,

In this research, the effect of the crystal structure of the parent phase on the morphology of nanoporous gold is explored. Specifically, Cu-Au alloys are studied. For this experiment, Cu0.75Au0.25 is heat treated to achieve an ordered phase Cu3Au and a disordered random solid solution, face centered cubic, Cu0.75Au0.25 phase, which are then dealloyed to form nanoporous gold (NPG). Using a morphology digital image analysis software called AQUAMI, SEM images of the NPG morphology were characterized to collect data on the ligament length, ligament diameter, porosity size, etc. of the samples. It was determined that the NPG formed from the ordered parent phase had an average ligament diameter that was 10 nm larger than the NPG formed from the disordered parent phase. This may be due to the ordered crystal structure allowing for faster gold diffusion and coarsening resulting in an increased average ligament size. Further future work is needed in order to obtain further evidence to support this hypothesis.
ContributorsTse, Ariana Yusof (Author) / Sieradzki, Karl (Thesis director) / Wang, Qing Hua (Committee member) / Materials Science and Engineering Program (Contributor) / Walter Cronkite School of Journalism & Mass Comm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132569-Thumbnail Image.png
Description
This paper discusses the possibility of utilizing 2D molybdenum disulfide (MoS2) as a nanozyme to detect dopamine colorimetric assays, first by detecting color change in liquid solutions due to oxidation and then second on paper-based assays. MoS2 samples dispersed in methylcellulose (MC) solution were prepared using liquid-phase exfoliation through sonication.

This paper discusses the possibility of utilizing 2D molybdenum disulfide (MoS2) as a nanozyme to detect dopamine colorimetric assays, first by detecting color change in liquid solutions due to oxidation and then second on paper-based assays. MoS2 samples dispersed in methylcellulose (MC) solution were prepared using liquid-phase exfoliation through sonication. The dopamine (DOPA) and hydrogen peroxide (H¬¬2O2) solutions were prepared separately in specific concentrations. The solutions were mixed in a well plate and colorimetric results were analyzed by a plate reader, revealing a quantitative relationship between dopamine concentration and absorbance. Subsequent testing was conducted using paper assays, where combined solutions of DOPA and H2O2 were dropped onto paper with printed wax wells that contained dried MoS2. An analysis of the color change was conducted using a smartphone application called Color Grab to detect the red, green, and blue (RGB) values. Plotting the RGB results across the dopamine concentrations revealed a positively correlated relationship between the two factors, suggesting that a predictive model could be developed to predict dopamine concentrations based on measured colorimetric values.
ContributorsNalla, Akshay (Co-author, Co-author) / Wang, Qing Hua (Thesis director) / Green, Alexander (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165717-Thumbnail Image.png
Description
Our group examined the low rate of clothing utilization in the fashion industry. Fast fashion has contributed to this low rate of utilization, as well as the high amounts of textiles that end up in landfills. Our startup, Patchwork Apparel, was designed to address this problem. Our clothes were made

Our group examined the low rate of clothing utilization in the fashion industry. Fast fashion has contributed to this low rate of utilization, as well as the high amounts of textiles that end up in landfills. Our startup, Patchwork Apparel, was designed to address this problem. Our clothes were made with fabric scraps or donated textiles that would otherwise end up in landfills. The mission of our business was to develop trendy and sustainable apparel that helped to eliminate textile waste while staying on brand with current fashion trends.
ContributorsBolas, Brandon (Author) / Schalla, Freya (Co-author) / Rebe, Breanna (Co-author) / Espinosa, Karly (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Balven, Rachel (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2022-05